Polynomial differential systems with invariant algebraic curves of arbitrary degree formed by Legendre polynomials

IF 0.7 2区 数学 Q2 MATHEMATICS
Jaume Llibre , Claudia Valls
{"title":"Polynomial differential systems with invariant algebraic curves of arbitrary degree formed by Legendre polynomials","authors":"Jaume Llibre ,&nbsp;Claudia Valls","doi":"10.1016/j.jpaa.2025.108001","DOIUrl":null,"url":null,"abstract":"<div><div>In 1891 Poincaré asked: <em>Given</em> <span><math><mi>m</mi><mo>≥</mo><mn>2</mn></math></span><em>, is there a positive integer</em> <span><math><mi>M</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span> <em>such that if a polynomial differential system of degree m has an invariant algebraic curve of degree</em> <span><math><mo>≥</mo><mi>M</mi><mo>(</mo><mi>m</mi><mo>)</mo></math></span><em>, then it has a rational first integral?</em> Brunella and Mendes repeated the same open question in 2000, and Lins-Neto in 2002. Between the years 2001 and 2003 three different families of quadratic polynomial differential systems provided a negative answer to this question. One of the answers used the Hermite polynomials. Recently a new negative answer was provided for polynomial differential systems of arbitrary degree using the Laguerre polynomials.</div><div>In this paper we provide another new negative answer but using for first time the Legendre polynomials. So the orthogonal polynomials play a role in the Poincaré's question. Moreover we classify the phase portraits of these polynomial differential systems having invariant algebraic curves of arbitrary degree based on the Legendre polynomials.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 8","pages":"Article 108001"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404925001409","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In 1891 Poincaré asked: Given m2, is there a positive integer M(m) such that if a polynomial differential system of degree m has an invariant algebraic curve of degree M(m), then it has a rational first integral? Brunella and Mendes repeated the same open question in 2000, and Lins-Neto in 2002. Between the years 2001 and 2003 three different families of quadratic polynomial differential systems provided a negative answer to this question. One of the answers used the Hermite polynomials. Recently a new negative answer was provided for polynomial differential systems of arbitrary degree using the Laguerre polynomials.
In this paper we provide another new negative answer but using for first time the Legendre polynomials. So the orthogonal polynomials play a role in the Poincaré's question. Moreover we classify the phase portraits of these polynomial differential systems having invariant algebraic curves of arbitrary degree based on the Legendre polynomials.
具有由勒让德多项式构成的任意次不变代数曲线的多项式微分系统
1891年庞加莱问:给定m≥2,是否存在一个正整数m (m),如果一个m次多项式微分系统有一个≥m (m)次的不变代数曲线,那么它有一个有理第一积分?布鲁内拉和门德斯在2000年重复了同样的开放性问题,林-内托在2002年也重复了同样的问题。在2001年到2003年间,三个不同的二次多项式微分系统族给出了这个问题的否定答案。其中一个答案使用了厄米特多项式。最近,利用拉盖尔多项式给出了任意次多项式微分系统的一个新的否定解。本文首次利用勒让德多项式给出了另一种新的负解。所以正交多项式在庞加莱问题中起了作用。此外,我们还基于勒让德多项式对具有任意次不变代数曲线的多项式微分系统的相图进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信