{"title":"Analysis of solar thermal collector with S-shaped ribs via energy, exergy, economic, and environmental (4E) approaches","authors":"Khushmeet Kumar , Sashank Thapa , Sushil Kumar , Deoraj Prajapati , Sushant Samir , Daeho Lee , Raj Kumar , Tej Singh","doi":"10.1016/j.solmat.2025.113743","DOIUrl":null,"url":null,"abstract":"<div><div>The current research examined the energy, exergy, economic, and environmental performance of a solar thermal collector (STC) featuring S-shape type ribs (SSTR) on its absorber plate. The proposed design aims to enhance energy utilization through optimized roughness parameters, minimizing pressure losses while maximizing heat transfer efficiency. The analytical model used in the study evaluates the exergetic efficiency (<span><math><mrow><msub><mi>η</mi><mrow><mi>E</mi><mi>X</mi><mi>G</mi><mi>Y</mi></mrow></msub></mrow></math></span>) and its dependency on design variables. In the experiments, SSTR were mounted on absorber plates with parameters relative roughness height <span><math><mrow><mo>(</mo><mrow><msub><mi>e</mi><mrow><mi>R</mi><mi>I</mi><mi>B</mi></mrow></msub><mo>/</mo><msub><mi>D</mi><mrow><mi>H</mi><mi>Y</mi></mrow></msub></mrow><mo>)</mo></mrow></math></span> ranging from 0.022 to 0.054, relative rib pitch (<span><math><mrow><msub><mi>P</mi><mrow><mi>R</mi><mi>I</mi><mi>B</mi></mrow></msub><mo>/</mo><msub><mi>e</mi><mrow><mi>R</mi><mi>I</mi><mi>B</mi></mrow></msub></mrow></math></span>) ranging from 4 to 16, relative roughness width (<span><math><mrow><msub><mi>W</mi><mi>D</mi></msub><mo>/</mo><msub><mi>w</mi><mrow><mi>S</mi><mi>R</mi></mrow></msub></mrow></math></span>) ranging from 1 to 4, and arc angle (<span><math><mrow><msub><mi>α</mi><mrow><mi>A</mi><mi>R</mi><mi>C</mi></mrow></msub><mo>)</mo></mrow></math></span> ranging from 30° to 75°. The best <span><math><mrow><msub><mi>η</mi><mrow><mi>E</mi><mi>X</mi><mi>G</mi><mi>Y</mi></mrow></msub></mrow></math></span> for the system is obtained for Reynolds number (<span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span>) between 2500 and 7500. The highest <span><math><mrow><msub><mi>η</mi><mrow><mi>E</mi><mi>X</mi><mi>G</mi><mi>Y</mi></mrow></msub></mrow></math></span> of 1.87 % for SSTR-STC is achieved for <span><math><mrow><mi>R</mi><mi>e</mi></mrow></math></span> of 6000 at <span><math><mrow><msub><mi>e</mi><mrow><mi>R</mi><mi>I</mi><mi>B</mi></mrow></msub><mo>/</mo><msub><mi>D</mi><mrow><mi>H</mi><mi>Y</mi></mrow></msub></mrow></math></span> = 0.043, <span><math><mrow><msub><mi>P</mi><mrow><mi>R</mi><mi>I</mi><mi>B</mi></mrow></msub><mo>/</mo><msub><mi>e</mi><mrow><mi>R</mi><mi>I</mi><mi>B</mi></mrow></msub></mrow></math></span> = 8, <span><math><mrow><msub><mi>W</mi><mi>D</mi></msub><mo>/</mo><msub><mi>w</mi><mrow><mi>S</mi><mi>R</mi></mrow></msub></mrow></math></span> = 3, <span><math><mrow><msub><mi>α</mi><mrow><mi>A</mi><mi>R</mi><mi>C</mi></mrow></msub></mrow></math></span> = 60°, and the temperature rise parameter (<span><math><mrow><mrow><mo>Δ</mo><mi>T</mi><mo>/</mo><msub><mi>I</mi><mrow><mi>S</mi><mi>R</mi></mrow></msub></mrow><mo>)</mo></mrow></math></span> of 0.0122 <span><math><mrow><mi>K</mi><msup><mi>m</mi><mn>2</mn></msup><mo>/</mo><mi>W</mi></mrow></math></span>. These findings confirm the technical and financial viability of using SSTR-based solar collectors for sustainable industrial and agricultural applications. Economic analysis reveals a favorable cost-effectiveness with an estimated energy cost of 0.12 $/kWh and a 20-years operational life with $116.47 annual cost establishing financial viability. This study performed an enviro-economic assessment to calculate the CO<sub>2</sub> reduction advantages of current assessed STC. The yearly useful energy (<span><math><mrow><msub><mrow><mi>E</mi><mi>n</mi></mrow><mrow><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> of STC with SSTR was calculated as 957.76 <span><math><mrow><mi>k</mi><mi>w</mi><mi>h</mi><mo>/</mo><mi>y</mi><mi>r</mi></mrow></math></span> compared with conventional STC of 600.91 <span><math><mrow><mi>k</mi><mi>w</mi><mi>h</mi><mo>/</mo><mi>y</mi><mi>r</mi><mtext>.</mtext></mrow></math></span> The environmental assessment highlights significant CO<sub>2</sub> reduction benefits, with an annual mitigation potential of approximately 38.31 tonnes and associated carbon credit savings of $555.49/year. The findings are crucial for renewable energy solutions, energy efficiency, carbon footprint reduction, and sustainable industrial and agricultural uses.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"292 ","pages":"Article 113743"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003447","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The current research examined the energy, exergy, economic, and environmental performance of a solar thermal collector (STC) featuring S-shape type ribs (SSTR) on its absorber plate. The proposed design aims to enhance energy utilization through optimized roughness parameters, minimizing pressure losses while maximizing heat transfer efficiency. The analytical model used in the study evaluates the exergetic efficiency () and its dependency on design variables. In the experiments, SSTR were mounted on absorber plates with parameters relative roughness height ranging from 0.022 to 0.054, relative rib pitch () ranging from 4 to 16, relative roughness width () ranging from 1 to 4, and arc angle ( ranging from 30° to 75°. The best for the system is obtained for Reynolds number () between 2500 and 7500. The highest of 1.87 % for SSTR-STC is achieved for of 6000 at = 0.043, = 8, = 3, = 60°, and the temperature rise parameter ( of 0.0122 . These findings confirm the technical and financial viability of using SSTR-based solar collectors for sustainable industrial and agricultural applications. Economic analysis reveals a favorable cost-effectiveness with an estimated energy cost of 0.12 $/kWh and a 20-years operational life with $116.47 annual cost establishing financial viability. This study performed an enviro-economic assessment to calculate the CO2 reduction advantages of current assessed STC. The yearly useful energy ( of STC with SSTR was calculated as 957.76 compared with conventional STC of 600.91 The environmental assessment highlights significant CO2 reduction benefits, with an annual mitigation potential of approximately 38.31 tonnes and associated carbon credit savings of $555.49/year. The findings are crucial for renewable energy solutions, energy efficiency, carbon footprint reduction, and sustainable industrial and agricultural uses.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.