Kun Yang , Mingming Zhang , Shanghui Yang , Yuwei Song , Xinhui Dong , Yanfei Deng , Xiaowei Deng
{"title":"Pareto frontier for multi-objective wind farm layout optimization balancing power production and turbine fatigue life","authors":"Kun Yang , Mingming Zhang , Shanghui Yang , Yuwei Song , Xinhui Dong , Yanfei Deng , Xiaowei Deng","doi":"10.1016/j.renene.2025.123429","DOIUrl":null,"url":null,"abstract":"<div><div>Layout optimization is a promising design process that will enhance the power efficiency of wind farms in the design stage. Single optimization targeting maximizing power production for wind farms has been studied for decades. Recently, multiple-objective layout optimization, considering more practical factors, has become urgently required with the rapid growth of wind energy. In this paper, we established a multiple-objective layout optimization framework that considers power performance and turbine fatigue life. Efficient power and fatigue life assessment approaches are adopted. Different scales of wind farms and typical wind roses are investigated. Pareto frontiers are drawn for each case to show the optimal solutions for multiple-objective optimizations. Notably, the deduction of wind speed and increase of turbulence intensity in the wake region have contrasting influences on the fatigue life. The turbines of optimal layouts are distant for higher overall power output but prefer to be closer for longer fatigue lives. Characteristic spacing describing the turbine density and the utilized area is suggested to be larger than 3.65<span><math><mi>D</mi></math></span> for any case and no less than 4.85<span><math><mi>D</mi></math></span> if the wind farm cannot afford the 85% power performance of the theoretical upper limit without wake loss.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"252 ","pages":"Article 123429"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125010912","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Layout optimization is a promising design process that will enhance the power efficiency of wind farms in the design stage. Single optimization targeting maximizing power production for wind farms has been studied for decades. Recently, multiple-objective layout optimization, considering more practical factors, has become urgently required with the rapid growth of wind energy. In this paper, we established a multiple-objective layout optimization framework that considers power performance and turbine fatigue life. Efficient power and fatigue life assessment approaches are adopted. Different scales of wind farms and typical wind roses are investigated. Pareto frontiers are drawn for each case to show the optimal solutions for multiple-objective optimizations. Notably, the deduction of wind speed and increase of turbulence intensity in the wake region have contrasting influences on the fatigue life. The turbines of optimal layouts are distant for higher overall power output but prefer to be closer for longer fatigue lives. Characteristic spacing describing the turbine density and the utilized area is suggested to be larger than 3.65 for any case and no less than 4.85 if the wind farm cannot afford the 85% power performance of the theoretical upper limit without wake loss.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.