In-situ DRIFTS and kinetic-thermodynamic evaluation of dry reforming of methane over La-modified alumina-supported Ni-Ce-Fe catalyst

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS
Fuel Pub Date : 2025-05-28 DOI:10.1016/j.fuel.2025.135816
Akanksha Singh Rajput, Krunalsinh Y. Chauhan, Aridaman Singh, Uday Kumar Mahto, Taraknath Das
{"title":"In-situ DRIFTS and kinetic-thermodynamic evaluation of dry reforming of methane over La-modified alumina-supported Ni-Ce-Fe catalyst","authors":"Akanksha Singh Rajput,&nbsp;Krunalsinh Y. Chauhan,&nbsp;Aridaman Singh,&nbsp;Uday Kumar Mahto,&nbsp;Taraknath Das","doi":"10.1016/j.fuel.2025.135816","DOIUrl":null,"url":null,"abstract":"<div><div>Dry reforming of methane (DRM) is a dual-purpose approach for reducing greenhouse gas emissions simultaneously producing syngas. Unraveling DRM mechanisms necessitates a combined interrogation of thermodynamic driving forces, transient surface species transformations, and rate-determining steps. Here, the study presents an integrated approach that combines thermodynamic assessment, kinetic modeling, and <em>in-situ</em> DRIFTS analysis to investigate the DRM reaction over the catalyst (Ni-Ce-Fe/La<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>) synthesized through the citrate sol–gel method. Catalyst characterization revealed that the La incorporation promotes the formation of NiAl<sub>2</sub>O<sub>4</sub> spinel and strengthens metal-support interactions. Catalytic performance was evaluated in a fixed-bed reactor, exhibiting the highest conversions of CO<sub>2</sub> and CH<sub>4</sub> at approximately 92 % and 86 %, respectively. Thermodynamic analysis indicated that above 625 °C, the reverse water–gas shift (RWGS) reaction becomes thermodynamically favorable alongside DRM, contributing to CO<sub>2</sub> consumption and H<sub>2</sub> depletion, which resulted in a lower H<sub>2</sub>/CO ratio and high CO<sub>2</sub> conversion<em>. In-situ</em> DRIFTS studies revealed the formation of surface intermediates such as bicarbonate, monodentate, and bidentate carbonates during CO<sub>2</sub> adsorption. Kinetic modeling based on the Langmuir-Hinshelwood-Hougen-Watson (LHHW) model identified methane associative adsorption as the rate-limiting step, with activation energy for CH<sub>4</sub> activation estimated at ∼70 kJ/mol and enthalpy for CO<sub>2</sub> adsorption around ∼65 kJ/mol.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"400 ","pages":"Article 135816"},"PeriodicalIF":6.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125015418","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Dry reforming of methane (DRM) is a dual-purpose approach for reducing greenhouse gas emissions simultaneously producing syngas. Unraveling DRM mechanisms necessitates a combined interrogation of thermodynamic driving forces, transient surface species transformations, and rate-determining steps. Here, the study presents an integrated approach that combines thermodynamic assessment, kinetic modeling, and in-situ DRIFTS analysis to investigate the DRM reaction over the catalyst (Ni-Ce-Fe/La2O3-Al2O3) synthesized through the citrate sol–gel method. Catalyst characterization revealed that the La incorporation promotes the formation of NiAl2O4 spinel and strengthens metal-support interactions. Catalytic performance was evaluated in a fixed-bed reactor, exhibiting the highest conversions of CO2 and CH4 at approximately 92 % and 86 %, respectively. Thermodynamic analysis indicated that above 625 °C, the reverse water–gas shift (RWGS) reaction becomes thermodynamically favorable alongside DRM, contributing to CO2 consumption and H2 depletion, which resulted in a lower H2/CO ratio and high CO2 conversion. In-situ DRIFTS studies revealed the formation of surface intermediates such as bicarbonate, monodentate, and bidentate carbonates during CO2 adsorption. Kinetic modeling based on the Langmuir-Hinshelwood-Hougen-Watson (LHHW) model identified methane associative adsorption as the rate-limiting step, with activation energy for CH4 activation estimated at ∼70 kJ/mol and enthalpy for CO2 adsorption around ∼65 kJ/mol.
la改性铝负载Ni-Ce-Fe催化剂上甲烷干重整的原位漂移和动力学-热力学评价
甲烷干重整(DRM)是一种减少温室气体排放同时生产合成气的双重方法。揭示DRM机制需要对热力学驱动力、瞬态表面物质转化和速率决定步骤进行综合研究。本研究采用了热力学评估、动力学建模和原位漂移分析相结合的综合方法,研究了柠檬酸盐溶胶-凝胶法合成的催化剂(Ni-Ce-Fe/La2O3-Al2O3)上的DRM反应。催化剂表征表明,La的掺入促进了NiAl2O4尖晶石的形成,增强了金属与载体的相互作用。在固定床反应器中对催化性能进行了评估,显示CO2和CH4的最高转化率分别约为92%和86%。热力学分析表明,在625°C以上,RWGS反应与DRM反应在热力学上有利,有利于CO2的消耗和H2的消耗,导致H2/CO比降低,CO2转化率提高。原位漂移研究表明,在二氧化碳吸附过程中,形成了表面中间体,如碳酸氢盐、单齿和双齿碳酸盐。基于Langmuir-Hinshelwood-Hougen-Watson (LHHW)模型的动力学模型确定甲烷结合吸附是限速步骤,CH4活化的活化能估计为~ 70 kJ/mol, CO2吸附的焓约为~ 65 kJ/mol。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信