Microbial electrosynthesis meets synthetic biology: Bioproduction from waste feedstocks

Dijin Zhang , Jee Loon Foo , Matthew Wook Chang
{"title":"Microbial electrosynthesis meets synthetic biology: Bioproduction from waste feedstocks","authors":"Dijin Zhang ,&nbsp;Jee Loon Foo ,&nbsp;Matthew Wook Chang","doi":"10.1016/j.biotno.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating electrochemistry and biology, microbial electrosynthesis (MES) enhances feedstock-to-product conversion by utilizing electroactive microorganisms to harness electrical energy for driving metabolic pathways. Advances in synthetic biology have improved microbial extracellular electron transfer and increased metabolic pathway efficiency, enabling optimized redox balance, expanded substrate versatility and enhanced bioproduction. Given the growing interest in sustainable chemical production and decarbonization, this mini-review highlights recent progress in MES enabled by synthetic biology, with a focus on engineering efficient microbial cell factories for electricity-mediated bioproduction through waste-derived feedstock utilization and carbon capture. We also highlight key challenges limiting MES scalability and propose future directions to enable industrial-scale deployment, unlocking its potential for sustainable, carbon-neutral production and driving transformative advances in biotechnology.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"6 ","pages":"Pages 157-163"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906925000108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating electrochemistry and biology, microbial electrosynthesis (MES) enhances feedstock-to-product conversion by utilizing electroactive microorganisms to harness electrical energy for driving metabolic pathways. Advances in synthetic biology have improved microbial extracellular electron transfer and increased metabolic pathway efficiency, enabling optimized redox balance, expanded substrate versatility and enhanced bioproduction. Given the growing interest in sustainable chemical production and decarbonization, this mini-review highlights recent progress in MES enabled by synthetic biology, with a focus on engineering efficient microbial cell factories for electricity-mediated bioproduction through waste-derived feedstock utilization and carbon capture. We also highlight key challenges limiting MES scalability and propose future directions to enable industrial-scale deployment, unlocking its potential for sustainable, carbon-neutral production and driving transformative advances in biotechnology.
微生物电合成符合合成生物学:废物原料的生物生产
结合电化学和生物学,微生物电合成(MES)通过利用电活性微生物利用电能驱动代谢途径来提高原料到产品的转化。合成生物学的进步改善了微生物胞外电子转移,提高了代谢途径效率,优化了氧化还原平衡,扩大了底物的多功能性,增强了生物生产。鉴于人们对可持续化学生产和脱碳的兴趣日益增长,本综述重点介绍了合成生物学在MES方面的最新进展,重点是通过废物来源的原料利用和碳捕获来设计高效的微生物细胞工厂,用于电力介导的生物生产。我们还强调了限制MES可扩展性的主要挑战,并提出了实现工业规模部署的未来方向,释放其可持续、碳中和生产的潜力,并推动生物技术的变革性进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信