{"title":"An interpretable integration fusion time-frequency prototype contrastive learning for machine fault diagnosis with limited labeled samples","authors":"Yutong Dong, Hongkai Jiang, Xin Wang, Mingzhe Mu","doi":"10.1016/j.inffus.2025.103340","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of Industry 4.0 and Industry 5.0, focusing on digital transformation and human-machine collaboration, has boosted the need for advanced fault diagnosis technologies. These must be interpretable to ensure industrial efficiency, reliability, and safety. However, current methods often rely on single-sensor information, require many labeled samples for training, and struggle to justify diagnostic decisions. These limitations reduce their effectiveness in real-world production environments. Aiming at these problems, this paper proposed an interpretable integration fusion time-frequency prototype contrastive learning (IIF-TFPCL) for machine fault diagnosis with limited labeled samples. First, a data-level fusion method based on integrated Gini coefficient entropy is designed to achieve credible fusion of multi-sensor signals while enhancing the fault characteristics of the fused signals. Second, an interpretable wavelet feature fusion convolutional transformer architecture is constructed to achieve interpretable fault extraction from faulty signals. Then, a dual dynamic pseudo-labeling selection strategy is devised to efficiently choose high-confidence unlabeled samples from the original imbalanced unlabeled data. In this process, a self-attention mechanism is employed to measure the correlation between unlabeled samples and initial prototypes. Finally, a time-frequency prototype contrastive loss is constructed to enhance the discriminative ability and robustness of the network in fault diagnosis tasks. The IIF-TFPCL was validated using fused multi-sensor signals and various original single-sensor signals. The experiments display that it is significantly superior to the remaining seven comparison methods. The experimental analysis demonstrates the excellent fault identification performance and interpretability of the IIF-TFPCL with limited labeled data.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"124 ","pages":"Article 103340"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525004130","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The rise of Industry 4.0 and Industry 5.0, focusing on digital transformation and human-machine collaboration, has boosted the need for advanced fault diagnosis technologies. These must be interpretable to ensure industrial efficiency, reliability, and safety. However, current methods often rely on single-sensor information, require many labeled samples for training, and struggle to justify diagnostic decisions. These limitations reduce their effectiveness in real-world production environments. Aiming at these problems, this paper proposed an interpretable integration fusion time-frequency prototype contrastive learning (IIF-TFPCL) for machine fault diagnosis with limited labeled samples. First, a data-level fusion method based on integrated Gini coefficient entropy is designed to achieve credible fusion of multi-sensor signals while enhancing the fault characteristics of the fused signals. Second, an interpretable wavelet feature fusion convolutional transformer architecture is constructed to achieve interpretable fault extraction from faulty signals. Then, a dual dynamic pseudo-labeling selection strategy is devised to efficiently choose high-confidence unlabeled samples from the original imbalanced unlabeled data. In this process, a self-attention mechanism is employed to measure the correlation between unlabeled samples and initial prototypes. Finally, a time-frequency prototype contrastive loss is constructed to enhance the discriminative ability and robustness of the network in fault diagnosis tasks. The IIF-TFPCL was validated using fused multi-sensor signals and various original single-sensor signals. The experiments display that it is significantly superior to the remaining seven comparison methods. The experimental analysis demonstrates the excellent fault identification performance and interpretability of the IIF-TFPCL with limited labeled data.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.