{"title":"Multi-view information fusion based on federated multi-objective neural architecture search for MRI semantic segmentation","authors":"Bin Cao , Huanyu Deng , Yiming Hao , Xiao Luo","doi":"10.1016/j.inffus.2025.103301","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of artificial intelligence, medical image semantic segmentation is being used more widely. However, centralized training can lead to privacy risks. At the same time, MRI provides multiple views that together describe the anatomical structure of a lesion, but a single view may not fully capture all features. Therefore, integrating multi-view information in a federated learning setting is a key challenge for improving model generalization. This study combines federated learning, neural architecture search (NAS) and data fusion techniques to address issues related to data privacy, cross-institutional data distribution differences and multi-view information fusion in medical imaging. To achieve this, we propose the FL-MONAS framework, which leverages the advantages of NAS and federated learning. It uses a Pareto-frontier-based multi-objective optimization strategy to effectively combine 2D MRI with 3D anatomical structures, improving model performance while ensuring data privacy. Experimental results show that FL-MONAS maintains strong segmentation performance even in non-IID scenarios, providing an efficient and privacy-friendly solution for medical image analysis.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"123 ","pages":"Article 103301"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525003744","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of artificial intelligence, medical image semantic segmentation is being used more widely. However, centralized training can lead to privacy risks. At the same time, MRI provides multiple views that together describe the anatomical structure of a lesion, but a single view may not fully capture all features. Therefore, integrating multi-view information in a federated learning setting is a key challenge for improving model generalization. This study combines federated learning, neural architecture search (NAS) and data fusion techniques to address issues related to data privacy, cross-institutional data distribution differences and multi-view information fusion in medical imaging. To achieve this, we propose the FL-MONAS framework, which leverages the advantages of NAS and federated learning. It uses a Pareto-frontier-based multi-objective optimization strategy to effectively combine 2D MRI with 3D anatomical structures, improving model performance while ensuring data privacy. Experimental results show that FL-MONAS maintains strong segmentation performance even in non-IID scenarios, providing an efficient and privacy-friendly solution for medical image analysis.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.