Two-pot ready-to-use reagents achieved quadruple-signal amplification for the ultra-sensitive biosensing of Salmonella Typhimurium in foods

IF 10.7 1区 生物学 Q1 BIOPHYSICS
Xingkai Hao , Yingjia Liu , Yuhao Wen , Wen Chen , Sami Ramadan , Nana Jin , Jianhan Lin , Yibin Ying , Danyang Li , Lizhou Xu
{"title":"Two-pot ready-to-use reagents achieved quadruple-signal amplification for the ultra-sensitive biosensing of Salmonella Typhimurium in foods","authors":"Xingkai Hao ,&nbsp;Yingjia Liu ,&nbsp;Yuhao Wen ,&nbsp;Wen Chen ,&nbsp;Sami Ramadan ,&nbsp;Nana Jin ,&nbsp;Jianhan Lin ,&nbsp;Yibin Ying ,&nbsp;Danyang Li ,&nbsp;Lizhou Xu","doi":"10.1016/j.bios.2025.117627","DOIUrl":null,"url":null,"abstract":"<div><div>The achievement of both ultra-sensitivity and operational simplicity remains a major challenge in the development of nanozymatic biosensors for foodborne pathogen detection. Here, we report a two-pot, ready-to-use nanozymatic colorimetric biosensor that integrates a cascade-based quadruple signal amplification strategy for the rapid detection of <em>Salmonella</em> Typhimurium (<em>S</em>.T.) in foods. The biosensor deploys rolling circle amplification (RCA) to generate repetitive aptamer motifs and hybridization sites, which are densely anchored onto generation 6.5 poly(amidoamine) dendrimers (G6.5) and hybridized with gold nanoparticles (AuNPs) to form RCA-G6.5-AuNP nanozymes. This architecture enables the first dual amplification via multivalent target recognition and high-density AuNP loading. Upon recognition of <em>S</em>.T. via magnetic nanoparticle-assisted capture, the nanozymes catalyze glucose oxidation, generating H<sub>2</sub>O<sub>2</sub> and gluconic acid which synergistically decompose MnO<sub>2</sub> nanosheets and inhibit 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation. This constitutes the second dual amplification through a catalytic cascade. Collectively, the quadruple amplification yields a 21-fold enhancement in detection sensitivity and a 3569-fold reduction in the detection limit (5 CFU/mL) compared to horseradish peroxidase-based systems. The entire assay is completed within 50 min using a two-pot reaction workflow, eliminating the need for enzymatic labelling, multi-step conjugation, or complex pretreatment and thus dramatically enhancing operational simplicity and reducing contamination risk. The biosensor exhibits a broad dynamic range (10–10<sup>6</sup> CFU/mL), high specificity, and robust performance in real food samples, with recovery rates of 93.3%–107.3% and RSD &lt; 9.85% in milk and beef. This work offers a sensitive and practical biosensing platform, bridging high-performance detection with real-world usability for food safety monitoring.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"286 ","pages":"Article 117627"},"PeriodicalIF":10.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0956566325005019","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The achievement of both ultra-sensitivity and operational simplicity remains a major challenge in the development of nanozymatic biosensors for foodborne pathogen detection. Here, we report a two-pot, ready-to-use nanozymatic colorimetric biosensor that integrates a cascade-based quadruple signal amplification strategy for the rapid detection of Salmonella Typhimurium (S.T.) in foods. The biosensor deploys rolling circle amplification (RCA) to generate repetitive aptamer motifs and hybridization sites, which are densely anchored onto generation 6.5 poly(amidoamine) dendrimers (G6.5) and hybridized with gold nanoparticles (AuNPs) to form RCA-G6.5-AuNP nanozymes. This architecture enables the first dual amplification via multivalent target recognition and high-density AuNP loading. Upon recognition of S.T. via magnetic nanoparticle-assisted capture, the nanozymes catalyze glucose oxidation, generating H2O2 and gluconic acid which synergistically decompose MnO2 nanosheets and inhibit 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation. This constitutes the second dual amplification through a catalytic cascade. Collectively, the quadruple amplification yields a 21-fold enhancement in detection sensitivity and a 3569-fold reduction in the detection limit (5 CFU/mL) compared to horseradish peroxidase-based systems. The entire assay is completed within 50 min using a two-pot reaction workflow, eliminating the need for enzymatic labelling, multi-step conjugation, or complex pretreatment and thus dramatically enhancing operational simplicity and reducing contamination risk. The biosensor exhibits a broad dynamic range (10–106 CFU/mL), high specificity, and robust performance in real food samples, with recovery rates of 93.3%–107.3% and RSD < 9.85% in milk and beef. This work offers a sensitive and practical biosensing platform, bridging high-performance detection with real-world usability for food safety monitoring.
两罐即用试剂实现了食品中鼠伤寒沙门菌超灵敏生物传感的四倍信号放大
实现超灵敏度和操作简单性仍然是发展用于食源性病原体检测的纳米酶生物传感器的主要挑战。在这里,我们报道了一种双罐即用型纳米酶比色生物传感器,该传感器集成了基于级联的四重信号放大策略,用于快速检测食品中的鼠伤寒沙门氏菌(S.T.)。该生物传感器利用滚动环扩增技术(RCA)产生重复的适体基序和杂交位点,这些基序和杂交位点被密集地固定在6.5代聚胺胺树状大分子(G6.5)上,并与金纳米颗粒(AuNPs)杂交,形成RCA-G6.5- aunp纳米酶。这种结构通过多价靶标识别和高密度AuNP加载实现了首次双重扩增。纳米酶通过磁性纳米粒子辅助捕获识别S.T.后,催化葡萄糖氧化,生成H2O2和葡萄糖酸,两者协同分解MnO2纳米片,抑制3,3 ',5,5 ' -四甲基联苯胺(TMB)氧化。这构成了通过催化级联的第二次双重放大。总的来说,与基于辣根过氧化物酶的系统相比,四倍扩增的检测灵敏度提高了21倍,检测限降低了3569倍(5 CFU/mL)。整个分析在50分钟内完成,使用两锅反应工作流程,消除了酶标记,多步偶联或复杂预处理的需要,从而大大提高了操作的简便性并降低了污染风险。该传感器动态范围宽(10-106 CFU/mL),特异性高,在实际食品样品中具有良好的检测性能,回收率为93.3% ~ 107.3%,RSD <;9.85%的牛奶和牛肉。这项工作提供了一个敏感和实用的生物传感平台,将高性能检测与现实世界的可用性连接起来,用于食品安全监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biosensors and Bioelectronics
Biosensors and Bioelectronics 工程技术-电化学
CiteScore
20.80
自引率
7.10%
发文量
1006
审稿时长
29 days
期刊介绍: Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信