Existence and global behaviour of solutions of a parabolic problem involving the fractional p-Laplacian in porous medium

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Loïc Constantin, Jacques Giacomoni, Guillaume Warnault
{"title":"Existence and global behaviour of solutions of a parabolic problem involving the fractional p-Laplacian in porous medium","authors":"Loïc Constantin,&nbsp;Jacques Giacomoni,&nbsp;Guillaume Warnault","doi":"10.1016/j.nonrwa.2025.104416","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the existence and the uniqueness of a weak and mild solution of the following nonlinear parabolic problem involving the porous <span><math><mi>p</mi></math></span>-fractional Laplacian: <span><span><span><math><mfenced><mrow><mtable><mtr><mtd><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>+</mo><msubsup><mrow><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow></mrow><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mrow><mo>(</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>h</mi><mrow><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>,</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi><mo>)</mo></mrow><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>×</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>)</mo></mrow><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>∖</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>⋅</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mspace></mspace></mtd><mtd><mtext>in</mtext><mspace></mspace><mi>Ω</mi><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></math></span></span></span>We also study further the the homogeneous case <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><msup><mrow><mrow><mo>|</mo><mi>u</mi><mo>|</mo></mrow></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>u</mi></mrow></math></span> with <span><math><mrow><mi>q</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. In particular we investigate global time existence, uniqueness, global behaviour of weak solutions and stabilization.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"87 ","pages":"Article 104416"},"PeriodicalIF":1.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001026","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove the existence and the uniqueness of a weak and mild solution of the following nonlinear parabolic problem involving the porous p-fractional Laplacian: tu+(Δ)ps(|u|m1u)=h(t,x,|u|m1u)in(0,T)×Ω,u=0in(0,T)×RdΩ,u(0,)=u0inΩ.We also study further the the homogeneous case h(u)=|u|q1u with q>0. In particular we investigate global time existence, uniqueness, global behaviour of weak solutions and stabilization.
多孔介质中含分数阶p-拉普拉斯抛物型问题解的存在性和全局行为
在本文中,我们证明了以下非线性抛物问题的弱温和解的存在唯一性,涉及多孔p分数阶拉普拉斯算子:∂tu+(−Δ)ps(|u|m−1u)=h(t,x,|u|m−1u) In (0, t)×Ω,u=0in(0, t)×Rd≠Ω,u(0,⋅)=u0inΩ。进一步研究了h(u)=|u|q−1u, q>;0的齐次情形。特别地,我们研究了弱解的全局时间存在性、唯一性、全局行为和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信