Bimetallic Synergy in Hydroxyapatite-Supported NiRe Nanocatalysts for Mild and Efficient Arene Hydrogenation

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weitao Mao, Yangjian Sun, Mingjie Liu, Xiaofeng Gao, Xiang Liu*, Zongbi Bao, Qiwei Yang, Qilong Ren and Zhiguo Zhang*, 
{"title":"Bimetallic Synergy in Hydroxyapatite-Supported NiRe Nanocatalysts for Mild and Efficient Arene Hydrogenation","authors":"Weitao Mao,&nbsp;Yangjian Sun,&nbsp;Mingjie Liu,&nbsp;Xiaofeng Gao,&nbsp;Xiang Liu*,&nbsp;Zongbi Bao,&nbsp;Qiwei Yang,&nbsp;Qilong Ren and Zhiguo Zhang*,&nbsp;","doi":"10.1021/acsanm.5c0182610.1021/acsanm.5c01826","DOIUrl":null,"url":null,"abstract":"<p >The development of cost-effective catalysts for mild arene hydrogenation is essential for the advancement of sustainable chemical processes. We present a rhenium-promoted nickel catalyst supported on hydroxyapatite (NiRe<sub>0.5</sub>/HAP) that enables efficient arene hydrogenation under mild conditions (50–130 °C, 0.5–2.0 MPa of H<sub>2</sub>). Using toluene hydrogenation as a model reaction, NiRe<sub>0.5</sub>/HAP (4.81 h<sup>–1</sup> TOF) demonstrates nearly 13 and 30 times the catalytic activity of monometallic Ni/HAP (0.36 h<sup>–1</sup> TOF) and Re/HAP (0.16 h<sup>–1</sup> TOF), respectively, at 50 °C and 1.0 MPa of H<sub>2</sub>. Structural and mechanistic studies reveal a trifunctional role of Re: (1) geometrically isolates Ni sites, preventing sintering and forming a highly dispersed NiRe bimetallic species that enhances surface accessibility of metal active sites; (2) modulates the electronic properties of Ni via Ni-to-Re electron transfer, accelerating H<sub>2</sub> dissociation and promoting hydrogenation; and (3) increases Lewis acidity, facilitating aromatic ring adsorption. The NiRe<sub>0.5</sub>/HAP catalyst exhibits broad substrate compatibility, efficiently hydrogenating functionalized aromatics and heterocycles in yields of up to 99%. Notably, it enables the complete hydrogenation of aromatic polyester polyethylene terephthalate (PET), yielding (bio)degradable polyethylene-1,4-cyclohexanedicarboxylate (PECHD), highlighting the robustness of this system. This work presents a synergistic electronic-geometric design strategy for non-noble bimetallic catalysts, delivering noble-metal-like performance with the cost advantages of transition metals for sustainable arene valorization.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 21","pages":"11131–11139 11131–11139"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01826","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of cost-effective catalysts for mild arene hydrogenation is essential for the advancement of sustainable chemical processes. We present a rhenium-promoted nickel catalyst supported on hydroxyapatite (NiRe0.5/HAP) that enables efficient arene hydrogenation under mild conditions (50–130 °C, 0.5–2.0 MPa of H2). Using toluene hydrogenation as a model reaction, NiRe0.5/HAP (4.81 h–1 TOF) demonstrates nearly 13 and 30 times the catalytic activity of monometallic Ni/HAP (0.36 h–1 TOF) and Re/HAP (0.16 h–1 TOF), respectively, at 50 °C and 1.0 MPa of H2. Structural and mechanistic studies reveal a trifunctional role of Re: (1) geometrically isolates Ni sites, preventing sintering and forming a highly dispersed NiRe bimetallic species that enhances surface accessibility of metal active sites; (2) modulates the electronic properties of Ni via Ni-to-Re electron transfer, accelerating H2 dissociation and promoting hydrogenation; and (3) increases Lewis acidity, facilitating aromatic ring adsorption. The NiRe0.5/HAP catalyst exhibits broad substrate compatibility, efficiently hydrogenating functionalized aromatics and heterocycles in yields of up to 99%. Notably, it enables the complete hydrogenation of aromatic polyester polyethylene terephthalate (PET), yielding (bio)degradable polyethylene-1,4-cyclohexanedicarboxylate (PECHD), highlighting the robustness of this system. This work presents a synergistic electronic-geometric design strategy for non-noble bimetallic catalysts, delivering noble-metal-like performance with the cost advantages of transition metals for sustainable arene valorization.

羟基磷灰石负载NiRe纳米催化剂中双金属协同作用对芳烃温和高效加氢的影响
开发经济高效的轻度芳烃加氢催化剂对于推进可持续化工过程至关重要。我们提出了一种负载在羟基磷灰石上的铼促进镍催化剂(NiRe0.5/HAP),它能在温和的条件下(50-130℃,0.5-2.0 MPa的H2)实现芳烃的高效加氢。以甲苯加氢为模型反应,在50℃和1.0 MPa H2条件下,NiRe0.5/HAP (4.81 h-1 TOF)的催化活性分别是单金属Ni/HAP (0.36 h-1 TOF)和Re/HAP (0.16 h-1 TOF)的近13倍和30倍。结构和机理研究揭示了Re的三个功能:(1)几何上隔离Ni位点,防止烧结和形成高度分散的NiRe双金属,增强金属活性位点的表面可达性;(2)通过Ni- re电子转移调节Ni的电子性质,加速H2解离,促进加氢;(3)提高路易斯酸度,促进芳香环吸附。NiRe0.5/HAP催化剂具有广泛的底物相容性,能有效地加氢功能化芳烃和杂环化合物,收率高达99%。值得注意的是,它可以使芳香聚酯聚对苯二甲酸乙二醇酯(PET)完全氢化,生成(生物)可降解的聚乙烯-1,4-环己二羧酸酯(PECHD),突出了该体系的鲁棒性。这项工作提出了一种非贵金属双金属催化剂的协同电子几何设计策略,为可持续的芳烃增值提供了类似贵金属的性能和过渡金属的成本优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信