Chemical Bond Covalency in Superionic Halide Solid-State Electrolytes

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiamin Fu, Han Su, Jing Luo, Xiaona Li, Jianwen Liang, Changhong Wang, Jung Tae Kim, Yang Hu, Feipeng Zhao, Shumin Zhang, Hui Duan, Xiaoge Hao, Weihan Li, Jian Peng, Jue Liu, Shuo Wang, Tsun-Kong Sham, Xueliang Sun
{"title":"Chemical Bond Covalency in Superionic Halide Solid-State Electrolytes","authors":"Jiamin Fu, Han Su, Jing Luo, Xiaona Li, Jianwen Liang, Changhong Wang, Jung Tae Kim, Yang Hu, Feipeng Zhao, Shumin Zhang, Hui Duan, Xiaoge Hao, Weihan Li, Jian Peng, Jue Liu, Shuo Wang, Tsun-Kong Sham, Xueliang Sun","doi":"10.1002/anie.202508835","DOIUrl":null,"url":null,"abstract":"Halide solid-state electrolytes (SSEs) are promising superionic conductors with high oxidative stability and ionic conductivity, making them attractive for all-solid-state lithium-ion batteries. However, most studies have focused on ion-stacking structures, overlooking the role of bond characteristics in ionic transport. Here, we investigate bond dynamics and the superionic transition (SIT) in bromide electrolyte, Li3InBr6, using synchrotron X-ray techniques and ab initio molecular dynamics (AIMD) simulations. We demonstrate that the SIT in halide SSEs is driven by a thermally induced transition in bonding character (ionic to covalent) rather than a change in crystal phase. AIMD simulations further reveal enhanced Li⁺ diffusion and collective anion motion at elevated temperatures. Expanding our study to Li3LnBr6 (Ln = Gd, Tb, Ho, Tm, Lu), we confirm the widespread occurrence of SIT in this material class, with Li3GdBr6 exhibiting the highest ionic conductivity (5.2 mS cm-1 at 298 K). More importantly, the ionic-covalent transition is highly tunable through electrolyte modifications, such as cation/anion substitution and synthesis methods. Our findings provide a new perspective on ionic transport, highlighting the critical role of chemical bond characteristics in halide SSEs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"2 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202508835","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Halide solid-state electrolytes (SSEs) are promising superionic conductors with high oxidative stability and ionic conductivity, making them attractive for all-solid-state lithium-ion batteries. However, most studies have focused on ion-stacking structures, overlooking the role of bond characteristics in ionic transport. Here, we investigate bond dynamics and the superionic transition (SIT) in bromide electrolyte, Li3InBr6, using synchrotron X-ray techniques and ab initio molecular dynamics (AIMD) simulations. We demonstrate that the SIT in halide SSEs is driven by a thermally induced transition in bonding character (ionic to covalent) rather than a change in crystal phase. AIMD simulations further reveal enhanced Li⁺ diffusion and collective anion motion at elevated temperatures. Expanding our study to Li3LnBr6 (Ln = Gd, Tb, Ho, Tm, Lu), we confirm the widespread occurrence of SIT in this material class, with Li3GdBr6 exhibiting the highest ionic conductivity (5.2 mS cm-1 at 298 K). More importantly, the ionic-covalent transition is highly tunable through electrolyte modifications, such as cation/anion substitution and synthesis methods. Our findings provide a new perspective on ionic transport, highlighting the critical role of chemical bond characteristics in halide SSEs.
超离子卤化物固态电解质中的化学键共价
卤化物固态电解质(sse)是一种极有前途的超离子导体,具有高氧化稳定性和离子电导率,使其成为全固态锂离子电池的理想材料。然而,大多数研究都集中在离子堆叠结构上,忽视了键特性在离子传输中的作用。在这里,我们利用同步x射线技术和从头算分子动力学(AIMD)模拟研究了溴化物电解质Li3InBr6中的键动力学和超离子跃迁(SIT)。我们证明了卤化物ssi中的SIT是由热诱导的键合特征转变(离子到共价)而不是晶体相的变化驱动的。AIMD模拟进一步揭示了高温下Li +的扩散和集体阴离子运动增强。将我们的研究扩展到Li3LnBr6 (Ln = Gd, Tb, Ho, Tm, Lu),我们证实了SIT在该材料类别中广泛存在,Li3GdBr6表现出最高的离子电导率(在298 K时为5.2 mS cm-1)。更重要的是,离子-共价转变是高度可调的,通过电解质修饰,如阳离子/阴离子取代和合成方法。我们的发现为离子传输提供了一个新的视角,强调了化学键特征在卤化物sse中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信