Anion Immobilization from Quasi-Icosahedron to Cubo-Octahedron Enhances the Lithium Ion Transference Number in Solid-State Electrolytes

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-29 DOI:10.1021/acsnano.5c05770
Zhiyuan Jiang, Huaxin Liu, Lei Fu, Ermeng Han, Yu-Qing Li, Qixia Bai, Zhe Zhang, Xiaobo Ji, Hongshuai Hou, Pingshan Wang, Tun Wu
{"title":"Anion Immobilization from Quasi-Icosahedron to Cubo-Octahedron Enhances the Lithium Ion Transference Number in Solid-State Electrolytes","authors":"Zhiyuan Jiang, Huaxin Liu, Lei Fu, Ermeng Han, Yu-Qing Li, Qixia Bai, Zhe Zhang, Xiaobo Ji, Hongshuai Hou, Pingshan Wang, Tun Wu","doi":"10.1021/acsnano.5c05770","DOIUrl":null,"url":null,"abstract":"Herein, we report the self-assembly of a <i>D</i><sub>3</sub>-symmetric <i>quasi</i>-icosahedron <b>4</b> based on a desymmetrized terpyridine ligand. The participant triflimide (NTf<sub>2</sub><sup>–</sup>) interacts with a rectangular aperture, templating the generation of <b>4</b>. With the addition of the other smaller anions (50–90 Å<sup>3</sup>) into <b>4</b>, supramolecular conversion to highly symmetric (<i>O</i>) cuboctahedron <b>5</b> can be observed due to optimizing the binding capabilities between anions and apertures of metallo-organic cages. This supramolecular conversion enables selective tight and multiple anion bindings with a clear binding mechanism and has been utilized to facilitate the dissociation of lithium–anion pairs and immobilization of anions in lithium metal batteries. Introducing <b>4</b> into solid polymer electrolytes can increase the lithium ion transference number <i>t</i><sub>+</sub> to 0.78, significantly enhancing the lithium ion conductivity within the electrolyte and enriching the lithium ion flux for transport. Consequently, the composite electrolyte exhibits excellent lithium ion transport kinetics, thereby endowing lithium metal batteries with superior electrochemical performance.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c05770","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we report the self-assembly of a D3-symmetric quasi-icosahedron 4 based on a desymmetrized terpyridine ligand. The participant triflimide (NTf2) interacts with a rectangular aperture, templating the generation of 4. With the addition of the other smaller anions (50–90 Å3) into 4, supramolecular conversion to highly symmetric (O) cuboctahedron 5 can be observed due to optimizing the binding capabilities between anions and apertures of metallo-organic cages. This supramolecular conversion enables selective tight and multiple anion bindings with a clear binding mechanism and has been utilized to facilitate the dissociation of lithium–anion pairs and immobilization of anions in lithium metal batteries. Introducing 4 into solid polymer electrolytes can increase the lithium ion transference number t+ to 0.78, significantly enhancing the lithium ion conductivity within the electrolyte and enriching the lithium ion flux for transport. Consequently, the composite electrolyte exhibits excellent lithium ion transport kinetics, thereby endowing lithium metal batteries with superior electrochemical performance.

Abstract Image

准二十面体到立方八面体的阴离子固定化提高了锂离子在固态电解质中的转移数
在此,我们报道了基于非对称三吡啶配体的三维对称准二十面体4的自组装。参与者triflimide (NTf2 -)与矩形孔径相互作用,模板生成4。在4中加入其他较小的阴离子(50-90 Å3)后,由于优化了阴离子与金属有机笼孔之间的结合能力,可以观察到超分子转化为高度对称的(O)立方面体5。这种超分子转化可以实现选择性紧密和多阴离子结合,具有明确的结合机制,并已被用于锂金属电池中锂-阴离子对的解离和阴离子的固定化。在固体聚合物电解质中引入4可以使锂离子转移数t+增加到0.78,显著提高了电解质内锂离子的电导率,增加了锂离子的输运通量。因此,复合电解质表现出优异的锂离子传输动力学,从而赋予锂金属电池优越的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信