Zhikang Xu, Mingbin Gao, Yao Wei, Yuanyuan Yue, Zhengshuai Bai, Pei Yuan, Paolo Fornasiero, Jean-Marie Basset, Bingbao Mei, Zhongmin Liu, Haibo Zhu, Mao Ye, Xiaojun Bao
{"title":"Pt migration-lockup in zeolite for stable propane dehydrogenation catalyst","authors":"Zhikang Xu, Mingbin Gao, Yao Wei, Yuanyuan Yue, Zhengshuai Bai, Pei Yuan, Paolo Fornasiero, Jean-Marie Basset, Bingbao Mei, Zhongmin Liu, Haibo Zhu, Mao Ye, Xiaojun Bao","doi":"10.1038/s41586-025-09168-8","DOIUrl":null,"url":null,"abstract":"<p>The shale gas revolution has shifted propylene production from naphtha cracking to on-purpose production with propane dehydrogenation (PDH) as the dominant technology<sup>1-9</sup>. Because PDH is endothermic and requires high temperatures that favour sintering and coking, the challenge is to develop active and stable catalysts<sup>1-3</sup> that are sufficiently stable<sup>10,11</sup>. Zeolite-supported Pt-Sn catalysts have been developed to balance activity, selectivity and stability<sup>12,13</sup>, and more recent work documented a PDH catalyst based on zeolite-anchored single rhodium atoms with exceptional performance and stability<sup>14</sup>. Here we show for silicalite-1 (S-1) that migration of encapsulated Pt-Sn<sub>2</sub> clusters and hence agglomeration and anchoring within the zeolite versus agglomeration on the external surface can be controlled by adjusting the length of the S-1 crystals’ <i>b</i>-axis. We find that when this axis is longer than 2.00 μm, migration of Pt-Sn<sub>2</sub> monomers during PDH results in intra-crystalline formation of (Pt-Sn<sub>2</sub>)<sub>2</sub> dimers that are securely locked in the channels of S-1 and capable of converting pure propane feed to propylene at 550 °C for more than 6 months with 98.3% selectivity at 91% equilibrium conversion. This performance exceeds that of other Pt-based PDH catalysts and approaches that of the Rh-based catalyst. While synthesis requirements and cost are currently prohibitive for industrial use, we anticipate that our approach to controlling the migration and lockup of metals in zeolites may enable to development of other noble metal catalysts that offer extended service lifetimes in industrial applications<sup>15-17</sup>.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":"82 1","pages":""},"PeriodicalIF":50.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-025-09168-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The shale gas revolution has shifted propylene production from naphtha cracking to on-purpose production with propane dehydrogenation (PDH) as the dominant technology1-9. Because PDH is endothermic and requires high temperatures that favour sintering and coking, the challenge is to develop active and stable catalysts1-3 that are sufficiently stable10,11. Zeolite-supported Pt-Sn catalysts have been developed to balance activity, selectivity and stability12,13, and more recent work documented a PDH catalyst based on zeolite-anchored single rhodium atoms with exceptional performance and stability14. Here we show for silicalite-1 (S-1) that migration of encapsulated Pt-Sn2 clusters and hence agglomeration and anchoring within the zeolite versus agglomeration on the external surface can be controlled by adjusting the length of the S-1 crystals’ b-axis. We find that when this axis is longer than 2.00 μm, migration of Pt-Sn2 monomers during PDH results in intra-crystalline formation of (Pt-Sn2)2 dimers that are securely locked in the channels of S-1 and capable of converting pure propane feed to propylene at 550 °C for more than 6 months with 98.3% selectivity at 91% equilibrium conversion. This performance exceeds that of other Pt-based PDH catalysts and approaches that of the Rh-based catalyst. While synthesis requirements and cost are currently prohibitive for industrial use, we anticipate that our approach to controlling the migration and lockup of metals in zeolites may enable to development of other noble metal catalysts that offer extended service lifetimes in industrial applications15-17.
期刊介绍:
Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.