Yidi Liu, Eun Kyo Ko, Yaoju Tarn, Lopa Bhatt, Jiarui Li, Vivek Thampy, Berit H. Goodge, David A. Muller, Srinivas Raghu, Yijun Yu, Harold Y. Hwang
{"title":"Superconductivity and normal-state transport in compressively strained La2PrNi2O7 thin films","authors":"Yidi Liu, Eun Kyo Ko, Yaoju Tarn, Lopa Bhatt, Jiarui Li, Vivek Thampy, Berit H. Goodge, David A. Muller, Srinivas Raghu, Yijun Yu, Harold Y. Hwang","doi":"10.1038/s41563-025-02258-y","DOIUrl":null,"url":null,"abstract":"<p>The discovery of superconductivity under high pressure in Ruddlesden–Popper phases of bulk nickelates has sparked great interest in stabilizing ambient-pressure superconductivity in the thin-film form using epitaxial strain. Recently, signs of superconductivity have been observed in compressively strained bilayer nickelate thin films with an onset temperature exceeding 40 K, although with broad, two-step-like transitions. Here we report the intrinsic superconductivity and normal-state transport properties in compressively strained La<sub>2</sub>PrNi<sub>2</sub>O<sub>7</sub> thin films, achieved through a combination of isovalent Pr substitution, growth optimization and precision ozone annealing. The superconducting onset occurs above 48 K, with zero resistance reached above 30 K, and the critical current density at 1.4 K is 100-fold larger than previous reports. The normal-state resistivity exhibits quadratic temperature dependence indicative of Fermi liquid behaviour, and other phenomenological similarities to transport in overdoped cuprates suggest parallels in their emergent properties.</p>","PeriodicalId":19058,"journal":{"name":"Nature Materials","volume":"2674 1","pages":""},"PeriodicalIF":37.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41563-025-02258-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The discovery of superconductivity under high pressure in Ruddlesden–Popper phases of bulk nickelates has sparked great interest in stabilizing ambient-pressure superconductivity in the thin-film form using epitaxial strain. Recently, signs of superconductivity have been observed in compressively strained bilayer nickelate thin films with an onset temperature exceeding 40 K, although with broad, two-step-like transitions. Here we report the intrinsic superconductivity and normal-state transport properties in compressively strained La2PrNi2O7 thin films, achieved through a combination of isovalent Pr substitution, growth optimization and precision ozone annealing. The superconducting onset occurs above 48 K, with zero resistance reached above 30 K, and the critical current density at 1.4 K is 100-fold larger than previous reports. The normal-state resistivity exhibits quadratic temperature dependence indicative of Fermi liquid behaviour, and other phenomenological similarities to transport in overdoped cuprates suggest parallels in their emergent properties.
期刊介绍:
Nature Materials is a monthly multi-disciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and engineering. It covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties, and performance of materials. The journal recognizes that materials research has an increasing impact on classical disciplines such as physics, chemistry, and biology.
Additionally, Nature Materials provides a forum for the development of a common identity among materials scientists and encourages interdisciplinary collaboration. It takes an integrated and balanced approach to all areas of materials research, fostering the exchange of ideas between scientists involved in different disciplines.
Nature Materials is an invaluable resource for scientists in academia and industry who are active in discovering and developing materials and materials-related concepts. It offers engaging and informative papers of exceptional significance and quality, with the aim of influencing the development of society in the future.