Intelligent column chromatography prediction model based on automation and machine learning

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chem Pub Date : 2025-05-29 DOI:10.1016/j.chempr.2025.102598
Wenchao Wu, Hao Xu, Yang Xu, Peijie Luo, Qingrui Zeng, Yuntian Chen, Yan Xu, Dongxiao Zhang, Fanyang Mo
{"title":"Intelligent column chromatography prediction model based on automation and machine learning","authors":"Wenchao Wu, Hao Xu, Yang Xu, Peijie Luo, Qingrui Zeng, Yuntian Chen, Yan Xu, Dongxiao Zhang, Fanyang Mo","doi":"10.1016/j.chempr.2025.102598","DOIUrl":null,"url":null,"abstract":"Efficient compound separation remains a persistent challenge in synthetic chemistry, with column chromatography serving as a critical purification tool. Traditional methods require extensive expertise and repetitive labor—areas where AI offers significant advantages. This study introduces an AI-driven platform to automate data collection and optimize separation processes. By leveraging deep learning, the system predicts key separation parameters, while transfer learning enables adaptation to diverse column specifications. A novel metric, separation probability <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mfenced is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;S&lt;/mi&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;p&lt;/mi&gt;&lt;/msub&gt;&lt;/mfenced&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -846.5 1848.5 1196.3\" width=\"4.293ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-28\"></use><g is=\"true\" transform=\"translate(389,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-53\"></use></g><g is=\"true\" transform=\"translate(613,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-70\"></use></g></g><use x=\"1459\" xlink:href=\"#MJMAIN-29\" y=\"0\"></use></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mfenced is=\"true\"><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\" mathvariant=\"italic\">p</mi></msub></mfenced></math></span></span><script type=\"math/mml\"><math><mfenced is=\"true\"><msub is=\"true\"><mi is=\"true\">S</mi><mi mathvariant=\"italic\" is=\"true\">p</mi></msub></mfenced></math></script></span>, quantifies the likelihood of successful component isolation and has been experimentally validated. The approach enhances precision, reduces manual intervention, and expands the scope of chromatographic applications, offering a more efficient and scalable solution for chemical purification.","PeriodicalId":268,"journal":{"name":"Chem","volume":"36 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102598","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient compound separation remains a persistent challenge in synthetic chemistry, with column chromatography serving as a critical purification tool. Traditional methods require extensive expertise and repetitive labor—areas where AI offers significant advantages. This study introduces an AI-driven platform to automate data collection and optimize separation processes. By leveraging deep learning, the system predicts key separation parameters, while transfer learning enables adaptation to diverse column specifications. A novel metric, separation probability Sp, quantifies the likelihood of successful component isolation and has been experimentally validated. The approach enhances precision, reduces manual intervention, and expands the scope of chromatographic applications, offering a more efficient and scalable solution for chemical purification.

Abstract Image

基于自动化和机器学习的智能色谱柱预测模型
在合成化学中,高效化合物分离一直是一个挑战,柱层析是一种重要的纯化工具。传统的方法需要广泛的专业知识和重复的劳动——在这些领域,人工智能提供了显著的优势。本研究介绍了一个人工智能驱动的平台,用于自动化数据收集和优化分离过程。通过利用深度学习,系统可以预测关键的分离参数,而迁移学习可以适应不同的柱规格。一种新的度量,分离概率SpSp,量化了成功分离组分的可能性,并得到了实验验证。该方法提高了精度,减少了人工干预,扩大了色谱应用范围,为化学净化提供了更有效和可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信