Tailored Gas–Solid Interfacial Selectivity of Porous Polyionic Liquid Monoliths for High-Efficiency PM Interception and Accurate CO2 Sieving

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Li Zhao, Zhen Li, Zhengshao Xiong, Jiao Yu, Baodui Chai, Yuan Xu, Yang Li, Jing-xin Ma, Dexiang Sun, Yang Lei
{"title":"Tailored Gas–Solid Interfacial Selectivity of Porous Polyionic Liquid Monoliths for High-Efficiency PM Interception and Accurate CO2 Sieving","authors":"Li Zhao, Zhen Li, Zhengshao Xiong, Jiao Yu, Baodui Chai, Yuan Xu, Yang Li, Jing-xin Ma, Dexiang Sun, Yang Lei","doi":"10.1021/acsami.5c04937","DOIUrl":null,"url":null,"abstract":"The high intrinsic viscosity of liquid-state ionic liquids (ILs) significantly impedes their application in the coseparation of CO<sub>2</sub> and PM from flue gas, as this attribute leads to diminished adsorption capacity and substantial energy consumption. Herein, we present a direct phase transition synthesis strategy that enables single-step conversion of ILs from liquid to solid states through radical polymerization, thereby fabricating monolithic imidazolium-based porous polyionic liquids (VEs) with charge-pore synergy for efficient flue gas separation. The three-dimensional hierarchical porous networks within monolithic VEs feature internal high-flux mass transfer channels, enhancing permeation efficiency under Knudsen diffusion and Fick’s law. Density functional theory simulations quantitatively confirm the intensified dipole polarization in VEs, elucidating the electrostatic adsorption mechanism responsible for their significantly increased adsorption capacity compared to liquid-state ILs. On this basis, fluent simulations reveal dynamic flow field characteristics of monolithic VEs, visualizing diffusion processes for CO<sub>2</sub>/PM under field interactions. This direct phase transition engineering strategy provides innovative insights into designing high-performance bifunctional CO<sub>2</sub>/PM adsorbents.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"148 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c04937","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high intrinsic viscosity of liquid-state ionic liquids (ILs) significantly impedes their application in the coseparation of CO2 and PM from flue gas, as this attribute leads to diminished adsorption capacity and substantial energy consumption. Herein, we present a direct phase transition synthesis strategy that enables single-step conversion of ILs from liquid to solid states through radical polymerization, thereby fabricating monolithic imidazolium-based porous polyionic liquids (VEs) with charge-pore synergy for efficient flue gas separation. The three-dimensional hierarchical porous networks within monolithic VEs feature internal high-flux mass transfer channels, enhancing permeation efficiency under Knudsen diffusion and Fick’s law. Density functional theory simulations quantitatively confirm the intensified dipole polarization in VEs, elucidating the electrostatic adsorption mechanism responsible for their significantly increased adsorption capacity compared to liquid-state ILs. On this basis, fluent simulations reveal dynamic flow field characteristics of monolithic VEs, visualizing diffusion processes for CO2/PM under field interactions. This direct phase transition engineering strategy provides innovative insights into designing high-performance bifunctional CO2/PM adsorbents.

Abstract Image

用于高效PM拦截和精确CO2筛分的多孔多离子液体单体的定制气固界面选择性
液态离子液体(ILs)的高特性粘度极大地阻碍了它们在烟气中CO2和PM共分离中的应用,因为这一特性会导致吸附能力下降和大量能源消耗。在此,我们提出了一种直接相变合成策略,可以通过自由基聚合将il从液体一步转化为固体,从而制造出具有电荷-孔隙协同作用的单片咪唑基多孔多离子液体(VEs),用于高效的烟气分离。单片ve内的三维分层多孔网络具有内部高通量传质通道,提高了Knudsen扩散和Fick定律下的渗透效率。密度泛函理论模拟定量地证实了ve中偶极极化的增强,阐明了与液态il相比,其吸附能力显著增加的静电吸附机制。在此基础上,fluent模拟揭示了整体式VEs的动态流场特征,可视化了CO2/PM在场相互作用下的扩散过程。这种直接的相变工程策略为设计高性能双功能CO2/PM吸附剂提供了创新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信