Jiahui Kang, Jan Kloppenburg, Jiali Sheng, Zhenyu Xu, Kristoffer Meinander, Hua Jiang, Zhong-Peng Lv, Esko I. Kauppinen, Qiang Zhang, Xi Chen, Milla Vikberg, Olli Ikkala, Miguel A. Caro, Bo Peng
{"title":"Anomalous Enhancement of the Electrocatalytic Hydrogen Evolution Reaction in AuPt Nanoclusters","authors":"Jiahui Kang, Jan Kloppenburg, Jiali Sheng, Zhenyu Xu, Kristoffer Meinander, Hua Jiang, Zhong-Peng Lv, Esko I. Kauppinen, Qiang Zhang, Xi Chen, Milla Vikberg, Olli Ikkala, Miguel A. Caro, Bo Peng","doi":"10.1021/acscatal.4c07859","DOIUrl":null,"url":null,"abstract":"Energy- and resource-efficient electrocatalytic water splitting is of paramount importance to enable hydrogen production. The best bulk catalyst for the hydrogen evolution reaction (HER), platinum, is one of the scarcest elements on Earth. The use of nanoclusters significantly reduces the amount of raw material required for HER, while nanoalloying further enhances performance by modulating hydrogen adsorption. However, the interplay between the atomic structure and HER performance in alloyed nanoclusters remains unclear. In this study, we report an anomalous HER enhancement at low and intermediate Au contents in monodisperse AuPt nanoclusters immobilized on carbon nanotubes. This enhancement is driven by the segregation of Au atoms toward the nanocluster surface and a synergistic effect, whereby the ability of surface Pt atoms to bind hydrogen is increased in the presence of adjacent Au atoms. This enhancement is noteworthy and “anomalous”, given that the overall hydrogen adsorption activity significantly decreases for pure Au nanoclusters compared to pure Pt nanoclusters. We rationalize these observations by combining extensive experimental characterization data with detailed atomistic simulations based on purpose-built machine learning interatomic potential and Markov-chain Monte Carlo simulations with variable chemical potential. The agreement between simulation and experiment allows us to develop a mechanistic understanding of the atomic-scale processes underlying the enhanced HER activity.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"3 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07859","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Energy- and resource-efficient electrocatalytic water splitting is of paramount importance to enable hydrogen production. The best bulk catalyst for the hydrogen evolution reaction (HER), platinum, is one of the scarcest elements on Earth. The use of nanoclusters significantly reduces the amount of raw material required for HER, while nanoalloying further enhances performance by modulating hydrogen adsorption. However, the interplay between the atomic structure and HER performance in alloyed nanoclusters remains unclear. In this study, we report an anomalous HER enhancement at low and intermediate Au contents in monodisperse AuPt nanoclusters immobilized on carbon nanotubes. This enhancement is driven by the segregation of Au atoms toward the nanocluster surface and a synergistic effect, whereby the ability of surface Pt atoms to bind hydrogen is increased in the presence of adjacent Au atoms. This enhancement is noteworthy and “anomalous”, given that the overall hydrogen adsorption activity significantly decreases for pure Au nanoclusters compared to pure Pt nanoclusters. We rationalize these observations by combining extensive experimental characterization data with detailed atomistic simulations based on purpose-built machine learning interatomic potential and Markov-chain Monte Carlo simulations with variable chemical potential. The agreement between simulation and experiment allows us to develop a mechanistic understanding of the atomic-scale processes underlying the enhanced HER activity.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.