{"title":"An asymmetric transformation of carbenium ions","authors":"","doi":"10.1038/s41929-025-01330-9","DOIUrl":null,"url":null,"abstract":"The enantiocontrolled conversion of carbenium ions presents a challenge owing to their instability and high reactivity. Through the combination of a chiral organocatalyst and photocatalyst, the intramolecular enantioselective and enantioconvergent amidation of C(sp3)–H bonds is now demonstrated, affording chiral oxazolidinone products via a transient carbenium ion complex.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"14 1","pages":"420-421"},"PeriodicalIF":42.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-025-01330-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The enantiocontrolled conversion of carbenium ions presents a challenge owing to their instability and high reactivity. Through the combination of a chiral organocatalyst and photocatalyst, the intramolecular enantioselective and enantioconvergent amidation of C(sp3)–H bonds is now demonstrated, affording chiral oxazolidinone products via a transient carbenium ion complex.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.