Frederico B. Sousa, Kazunori Fujisawa, Felipe Menescal, Matheus J. S. Matos, Marcos A. Pimenta, Helio Chacham, Mauricio Terrones, Leandro M. Malard, Bruno R. Carvalho
{"title":"Optical spectroscopy of defects in atomically thin transition metal dichalcogenides","authors":"Frederico B. Sousa, Kazunori Fujisawa, Felipe Menescal, Matheus J. S. Matos, Marcos A. Pimenta, Helio Chacham, Mauricio Terrones, Leandro M. Malard, Bruno R. Carvalho","doi":"10.1063/5.0251288","DOIUrl":null,"url":null,"abstract":"In this review, we address the optical signatures of defects in two-dimensional transition metal dichalcogenides (2D TMDs), whether they occur unintentionally during growth or are deliberately introduced post-growth. We detail their primary responses as probed by photoluminescence (PL), magneto-PL, Raman, tip-enhanced PL and Raman, and nonlinear spectroscopies. Defects significantly impact the electronic, vibrational, magneto-optical, and nonlinear properties of TMDs, influencing outcomes based on application needs. This comprehensive overview highlights the distinctive optical fingerprints of various defects, providing guidance for their identification and characterization. Additionally, we discuss new optical phenomena induced by defects in TMD monolayers and future challenges in defect engineering for these materials. The insights from this review underscore the potential of TMDs for technological applications, with advancements in spectroscopy and defect engineering driving future innovations and enhancing our understanding of these materials.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"244 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0251288","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this review, we address the optical signatures of defects in two-dimensional transition metal dichalcogenides (2D TMDs), whether they occur unintentionally during growth or are deliberately introduced post-growth. We detail their primary responses as probed by photoluminescence (PL), magneto-PL, Raman, tip-enhanced PL and Raman, and nonlinear spectroscopies. Defects significantly impact the electronic, vibrational, magneto-optical, and nonlinear properties of TMDs, influencing outcomes based on application needs. This comprehensive overview highlights the distinctive optical fingerprints of various defects, providing guidance for their identification and characterization. Additionally, we discuss new optical phenomena induced by defects in TMD monolayers and future challenges in defect engineering for these materials. The insights from this review underscore the potential of TMDs for technological applications, with advancements in spectroscopy and defect engineering driving future innovations and enhancing our understanding of these materials.
期刊介绍:
Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles:
Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community.
Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.