{"title":"A signal amplifier engineered via a cleavable stochastic bipedal DNA walker","authors":"Chuipeng Kong, Qianfan Yang, Feng Li","doi":"10.1039/d5cc02775f","DOIUrl":null,"url":null,"abstract":"Bipedal DNA walkers (BDWs) are highly efficient signal amplifiers for biomolecular analysis but are of limited activation strategies for non-nucleic acid targets. Herein, we report a cleavable BDW design that effectively expands the target sets of this class of signal amplifiers. Specifically, we first demonstrated that folded DNA structures at the 3` end of BDW are highly efficient steric blockers capable of fully deactivating BDW. Using a RNA cleaving DNAzyme serving both as a steric blocker and a target cleavable motif, we successfully engineered a signal amplifier for uranyl ions with a limit of detection at 1.0 nM. Our study enriches the design rules for engineering DNA nanomachines as highly efficient biosensors.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5cc02775f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bipedal DNA walkers (BDWs) are highly efficient signal amplifiers for biomolecular analysis but are of limited activation strategies for non-nucleic acid targets. Herein, we report a cleavable BDW design that effectively expands the target sets of this class of signal amplifiers. Specifically, we first demonstrated that folded DNA structures at the 3` end of BDW are highly efficient steric blockers capable of fully deactivating BDW. Using a RNA cleaving DNAzyme serving both as a steric blocker and a target cleavable motif, we successfully engineered a signal amplifier for uranyl ions with a limit of detection at 1.0 nM. Our study enriches the design rules for engineering DNA nanomachines as highly efficient biosensors.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.