Covalent Organic Frameworks Coupled with Redox Center and Adsorption Site for Efficient Shuttle‐Free Zn‐Iodine Batteries

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jing-Dong Feng, Wang-Kang Han, Jun-Jun He, Yong Liu, Ruo-Meng Zhu, Jinfang Zhang, Huan Pang, Zhi-Guo Gu
{"title":"Covalent Organic Frameworks Coupled with Redox Center and Adsorption Site for Efficient Shuttle‐Free Zn‐Iodine Batteries","authors":"Jing-Dong Feng, Wang-Kang Han, Jun-Jun He, Yong Liu, Ruo-Meng Zhu, Jinfang Zhang, Huan Pang, Zhi-Guo Gu","doi":"10.1002/anie.202506006","DOIUrl":null,"url":null,"abstract":"Aqueous zinc‐iodine (Zn‐I2) batteries exhibit significant potential for next‐generation energy storage system, but the polyiodide shuttle effect severely impairs their performance and stability. Herein, a series of woven covalent organic frameworks (COFs), namely COF‐RuNCS‐X (X = 1‐6), with pre‐designed ruthenium(II) redox center and sulfur adsorption sites were constructed for shuttle‐free cathode material in Zn‐I2 batteries. The porous COF‐RuNCS‐X with abundant sulfur adsorption sites showed a selective adsorption of I3− species for effectively mitigating the shuttle effect. Meanwhile, the incorporation of ruthenium(II) center into the COFs skeleton enhanced the redox kinetics of iodine species. Remarkably, COF‐RuNCS‐6 featuring the large pore size and high degree of conjugation demonstrated a discharge specific capacity as high as 395.8 m Ah g‐1 in Zn‐I2 batteries and exhibited cycle stability up to 5000 cycles. This work provides a new understanding of the design of COF‐based materials as efficient shuttle‐free cathode materials for Zn‐I2 batteries.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"57 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202506006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous zinc‐iodine (Zn‐I2) batteries exhibit significant potential for next‐generation energy storage system, but the polyiodide shuttle effect severely impairs their performance and stability. Herein, a series of woven covalent organic frameworks (COFs), namely COF‐RuNCS‐X (X = 1‐6), with pre‐designed ruthenium(II) redox center and sulfur adsorption sites were constructed for shuttle‐free cathode material in Zn‐I2 batteries. The porous COF‐RuNCS‐X with abundant sulfur adsorption sites showed a selective adsorption of I3− species for effectively mitigating the shuttle effect. Meanwhile, the incorporation of ruthenium(II) center into the COFs skeleton enhanced the redox kinetics of iodine species. Remarkably, COF‐RuNCS‐6 featuring the large pore size and high degree of conjugation demonstrated a discharge specific capacity as high as 395.8 m Ah g‐1 in Zn‐I2 batteries and exhibited cycle stability up to 5000 cycles. This work provides a new understanding of the design of COF‐based materials as efficient shuttle‐free cathode materials for Zn‐I2 batteries.
含氧化还原中心和吸附位点的共价有机骨架高效无梭锌碘电池
锌-碘(Zn - I2)水电池在下一代储能系统中表现出巨大的潜力,但多碘离子穿梭效应严重损害了其性能和稳定性。本文构建了一系列编织共价有机框架(COFs),即COF‐RuNCS‐X (X = 1‐6),具有预先设计的钌(II)氧化还原中心和硫吸附位点,用于Zn‐I2电池的无梭正极材料。多孔COF - RuNCS - X具有丰富的硫吸附位点,可选择性吸附I3−,有效减轻穿梭效应。同时,钌(II)中心在COFs骨架中的掺入增强了碘的氧化还原动力学。值得注意的是,具有大孔径和高共轭度的COF‐RuNCS‐6在Zn‐I2电池中显示出高达395.8 m Ah g‐1的放电比容量,并表现出高达5000次循环的循环稳定性。这项工作为设计高效的无穿梭锌离子电池正极材料提供了新的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信