{"title":"BIT: Bayesian Identification of Transcriptional regulators from epigenomics-based query region sets","authors":"Zeyu Lu, Lin Xu, Xinlei Wang","doi":"10.1038/s41467-025-60269-4","DOIUrl":null,"url":null,"abstract":"<p>Transcriptional regulators (TRs) are master controllers of gene expression and play a critical role in both normal tissue development and disease progression. However, existing computational methods for identification of TRs regulating specific biological processes have significant limitations, such as relying on distance on a linear chromosome or binding motifs that have low specificity. Many also use statistical tests in ways that lack interpretability and rigorous confidence measures. We introduce BIT, a Bayesian hierarchical model for <i>in-silico</i> TR identification. Leveraging a comprehensive library of TR ChIP-seq data, BIT offers a fully integrated Bayesian approach to assess genome-wide consistency between user-provided epigenomic profiling data and the TR binding library, enabling the identification of critical TRs while quantifying uncertainty. It avoids estimation and inference in a sequential manner or numerous isolated statistical tests, thereby enhancing accuracy and interpretability. BIT successfully identifies perturbed TRs in perturbation experiments, functionally essential TRs in various cancer types, and cell-type-specific TRs within heterogeneous cell populations, offering deeper biological insights into transcriptional regulation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"36 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60269-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Transcriptional regulators (TRs) are master controllers of gene expression and play a critical role in both normal tissue development and disease progression. However, existing computational methods for identification of TRs regulating specific biological processes have significant limitations, such as relying on distance on a linear chromosome or binding motifs that have low specificity. Many also use statistical tests in ways that lack interpretability and rigorous confidence measures. We introduce BIT, a Bayesian hierarchical model for in-silico TR identification. Leveraging a comprehensive library of TR ChIP-seq data, BIT offers a fully integrated Bayesian approach to assess genome-wide consistency between user-provided epigenomic profiling data and the TR binding library, enabling the identification of critical TRs while quantifying uncertainty. It avoids estimation and inference in a sequential manner or numerous isolated statistical tests, thereby enhancing accuracy and interpretability. BIT successfully identifies perturbed TRs in perturbation experiments, functionally essential TRs in various cancer types, and cell-type-specific TRs within heterogeneous cell populations, offering deeper biological insights into transcriptional regulation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.