Arthur Dehgan, Hamza Abdelhedi, Vanessa Hadid, Irina Rish, Karim Jerbi
{"title":"Artificial neural networks for magnetoencephalography: a review of an emerging field.","authors":"Arthur Dehgan, Hamza Abdelhedi, Vanessa Hadid, Irina Rish, Karim Jerbi","doi":"10.1088/1741-2552/addd4a","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive processes with an unparalleled combination of high temporal and spatial precision. While MEG data analytics have traditionally relied on advanced signal processing and mathematical and statistical tools, the recent surge in artificial intelligence has led to the growing use of machine learning (ML) methods for MEG data classification. An emerging trend in this field is the use of artificial neural networks (ANNs) to address various MEG-related tasks. This review aims to provide a comprehensive overview of the state of the art in this area.<i>Approach</i>. This topical review included studies that applied ANNs to MEG data. Studies were sourced from PubMed, Google Scholar, arXiv, and bioRxiv using targeted search queries. The included studies were categorized into three groups: 'Classification', 'Modeling', and 'Other'. Key findings and trends were summarized to provide a comprehensive assessment of the field.<i>Main results</i>. We identified 119 relevant studies, with 70 focused on 'Classification', 16 on 'Modeling', and 33 in the 'Other' category. 'Classification' studies addressed tasks such as brain decoding, clinical diagnostics, and brain-computer interfaces implementations, often achieving high predictive accuracy. 'Modeling' studies explored the alignment between ANN activations and brain processes, offering insights into the neural representations captured by these networks. The 'Other' category demonstrated innovative uses of ANNs for artifact correction, preprocessing, and neural source localization.<i>Significance</i>. By establishing a detailed portrait of the current state of the field, this review highlights the strengths and current limitations of ANNs in MEG research. It also provides practical recommendations for future work, offering a helpful reference for seasoned researchers and newcomers interested in using ANNs to explore the complex dynamics of the human brain with MEG.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/addd4a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive processes with an unparalleled combination of high temporal and spatial precision. While MEG data analytics have traditionally relied on advanced signal processing and mathematical and statistical tools, the recent surge in artificial intelligence has led to the growing use of machine learning (ML) methods for MEG data classification. An emerging trend in this field is the use of artificial neural networks (ANNs) to address various MEG-related tasks. This review aims to provide a comprehensive overview of the state of the art in this area.Approach. This topical review included studies that applied ANNs to MEG data. Studies were sourced from PubMed, Google Scholar, arXiv, and bioRxiv using targeted search queries. The included studies were categorized into three groups: 'Classification', 'Modeling', and 'Other'. Key findings and trends were summarized to provide a comprehensive assessment of the field.Main results. We identified 119 relevant studies, with 70 focused on 'Classification', 16 on 'Modeling', and 33 in the 'Other' category. 'Classification' studies addressed tasks such as brain decoding, clinical diagnostics, and brain-computer interfaces implementations, often achieving high predictive accuracy. 'Modeling' studies explored the alignment between ANN activations and brain processes, offering insights into the neural representations captured by these networks. The 'Other' category demonstrated innovative uses of ANNs for artifact correction, preprocessing, and neural source localization.Significance. By establishing a detailed portrait of the current state of the field, this review highlights the strengths and current limitations of ANNs in MEG research. It also provides practical recommendations for future work, offering a helpful reference for seasoned researchers and newcomers interested in using ANNs to explore the complex dynamics of the human brain with MEG.