Honglei Zhang, Jingxuan Ma, Teng Ma, Yuqing Ma, Lijie Jin, Lijie Liu, Yangjian Liu, Kai Dong, Man Zhang, Dawei Huang, Fei Yu and Gengshen Song
{"title":"GPT-driven generation and biological activity evaluation of novel mRNA trinucleotide Cap1 analogs for mRNA vaccine or immunotherapy†","authors":"Honglei Zhang, Jingxuan Ma, Teng Ma, Yuqing Ma, Lijie Jin, Lijie Liu, Yangjian Liu, Kai Dong, Man Zhang, Dawei Huang, Fei Yu and Gengshen Song","doi":"10.1039/D5TB00750J","DOIUrl":null,"url":null,"abstract":"<p >Analogs of the mRNA 5′-cap are indispensable for mRNA translation, stability, translation efficiency, and immunogenicity, with emerging potential applications in novel preventive and therapeutic interventions. Here, this study presents a novel approach for designing mRNA Cap1 analogs with optimized biological activity. We leveraged the power of generative pre-trained transformer (GPT) architecture to generate novel cap analog sequences. A discriminative model is then employed to select promising candidates based on their predicted expression levels. Our results demonstrate that the GPT-based generative model significantly outperforms a traditional recurrent neural network (RNN) in terms of perplexity, indicating its superior ability to generate diverse and accurate cap analog sequences. Furthermore, the expression screening model achieves high accuracy in identifying potential high-expression candidates. Then, we synthesized a set of designed novel trinucleotide mRNA Cap1 analogs with modified ribose and incorporated it into mRNA using T7 polymerase. A series of experiments revealed that mRNA capped with YK-CAP-01–06 analogs exhibited increased translation efficiency and decapping enzyme stability compared to the commercially available cap-analog-capped mRNA. Finally, the potential application value was explored by constructing OVA, RSV preF- and VZV gE-mRNA vaccines, which resulted in significant (<em>vs.</em> controls) inhibition of tumor growth and an increase in IgG antibody levels in mice.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 25","pages":" 7280-7292"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00750j","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Analogs of the mRNA 5′-cap are indispensable for mRNA translation, stability, translation efficiency, and immunogenicity, with emerging potential applications in novel preventive and therapeutic interventions. Here, this study presents a novel approach for designing mRNA Cap1 analogs with optimized biological activity. We leveraged the power of generative pre-trained transformer (GPT) architecture to generate novel cap analog sequences. A discriminative model is then employed to select promising candidates based on their predicted expression levels. Our results demonstrate that the GPT-based generative model significantly outperforms a traditional recurrent neural network (RNN) in terms of perplexity, indicating its superior ability to generate diverse and accurate cap analog sequences. Furthermore, the expression screening model achieves high accuracy in identifying potential high-expression candidates. Then, we synthesized a set of designed novel trinucleotide mRNA Cap1 analogs with modified ribose and incorporated it into mRNA using T7 polymerase. A series of experiments revealed that mRNA capped with YK-CAP-01–06 analogs exhibited increased translation efficiency and decapping enzyme stability compared to the commercially available cap-analog-capped mRNA. Finally, the potential application value was explored by constructing OVA, RSV preF- and VZV gE-mRNA vaccines, which resulted in significant (vs. controls) inhibition of tumor growth and an increase in IgG antibody levels in mice.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices