Valeria Scala, Nicoletta Pucci, Riccardo Fiorani, Alessia L'Aurora, Alessandro Polito, Marco Di Marsico, Riccardo Aiese Cigliano, Eleonora Barra, Serena Ciarroni, Francesca De Amicis, Salvatore Fascella, Francesca Gaffuri, Andreas Gallmetzer, Francesca Giacobbi, Pasquale Domenico Grieco, Valeria Gualandri, Giovanna Mason, Daniela Pasqua di Bisceglie, Domenico Rizzo, Maria Rosaria Silletti, Simona Talevi, Marco Testa, Cosimo Tocci, Stefania Loreti
{"title":"<i>Pantoea stewartii</i> subsp. <i>stewartii</i> an Inter-Laboratory Comparative Study of Molecular Tests and Comparative Genome Analysis of Italian Strains.","authors":"Valeria Scala, Nicoletta Pucci, Riccardo Fiorani, Alessia L'Aurora, Alessandro Polito, Marco Di Marsico, Riccardo Aiese Cigliano, Eleonora Barra, Serena Ciarroni, Francesca De Amicis, Salvatore Fascella, Francesca Gaffuri, Andreas Gallmetzer, Francesca Giacobbi, Pasquale Domenico Grieco, Valeria Gualandri, Giovanna Mason, Daniela Pasqua di Bisceglie, Domenico Rizzo, Maria Rosaria Silletti, Simona Talevi, Marco Testa, Cosimo Tocci, Stefania Loreti","doi":"10.3390/plants14101470","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pantoea stewartii</i> subsp. <i>stewartii</i> (Pss) is a Gram-negative bacterium causing Stewart wilt, a severe disease in maize. Native to North America, it has spread globally through the maize seed trade. Resistant maize varieties and insecticides are crucial to mitigate the disease's economic impact. Pss is a quarantine pest, requiring phytosanitary certification for the seed trade in European countries. Accurate diagnostic tests, including real-time PCR, are fundamental to detect Pss and distinguish it from other bacteria, like <i>Pantoea stewartii</i> subsp. <i>indologenes</i> (Psi), a non-quarantine bacteria associated with maize seeds. Population genetics is a valuable tool for studying adaptation, speciation, population structure, diversity, and evolution in plant bacterial pathogens. In this study, the key activities of interlaboratory comparisons are reported to assess diagnostic sensitivity (DSE), diagnostic specificity (DSP) and accuracy (ACC) for different real-time PCR able to detect Pss in seeds. The results of complete sequencing of Italian bacterial isolates are presented. This study enhances our understanding of molecular methods for diagnosing and identifying pathogens in maize seeds, improving knowledge of Pss genomes to prevent their spread and trace possible entry routes from endemic to non-endemic areas.</p>","PeriodicalId":56267,"journal":{"name":"Plants-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/plants14101470","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium causing Stewart wilt, a severe disease in maize. Native to North America, it has spread globally through the maize seed trade. Resistant maize varieties and insecticides are crucial to mitigate the disease's economic impact. Pss is a quarantine pest, requiring phytosanitary certification for the seed trade in European countries. Accurate diagnostic tests, including real-time PCR, are fundamental to detect Pss and distinguish it from other bacteria, like Pantoea stewartii subsp. indologenes (Psi), a non-quarantine bacteria associated with maize seeds. Population genetics is a valuable tool for studying adaptation, speciation, population structure, diversity, and evolution in plant bacterial pathogens. In this study, the key activities of interlaboratory comparisons are reported to assess diagnostic sensitivity (DSE), diagnostic specificity (DSP) and accuracy (ACC) for different real-time PCR able to detect Pss in seeds. The results of complete sequencing of Italian bacterial isolates are presented. This study enhances our understanding of molecular methods for diagnosing and identifying pathogens in maize seeds, improving knowledge of Pss genomes to prevent their spread and trace possible entry routes from endemic to non-endemic areas.
Plants-BaselAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.50
自引率
11.10%
发文量
2923
审稿时长
15.4 days
期刊介绍:
Plants (ISSN 2223-7747), is an international and multidisciplinary scientific open access journal that covers all key areas of plant science. It publishes review articles, regular research articles, communications, and short notes in the fields of structural, functional and experimental botany. In addition to fundamental disciplines such as morphology, systematics, physiology and ecology of plants, the journal welcomes all types of articles in the field of applied plant science.