Programmable Cargo Release from Jet-Printed Microgel Particles via an In Situ Ionic Exchange Method.

Chem & Bio Engineering Pub Date : 2025-04-24 eCollection Date: 2025-05-22 DOI:10.1021/cbe.5c00017
Rong Ma, Jihpeng Sun, Sungwan Park, Fiona Nikolla, Albert Tianxiang Liu
{"title":"Programmable Cargo Release from Jet-Printed Microgel Particles via an In Situ Ionic Exchange Method.","authors":"Rong Ma, Jihpeng Sun, Sungwan Park, Fiona Nikolla, Albert Tianxiang Liu","doi":"10.1021/cbe.5c00017","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel-based drug delivery systems hold significant clinical potential by enabling precise spatial and temporal control over therapeutic release, ranging from metabolites, macromolecules to other cellular and subcellular constructs. However, achieving programmable release of payloads with diverse molecular weights at distinct rates typically requires complex polymer designs that can compromise the accessibility and biocompatibility of the delivery system. We present a scalable method for producing injectable, micrometer-scale alginate hydrogel particles (microgels) with precisely tuned microstructures for multiplexed, programmable cargo release. Our approach integrates an established jetting technique with a simple postsynthesis ion-exchange process to fine-tune the cross-linked microstructure of alginate microgels. By varying cation type (Ca<sup>2+</sup>, Mg<sup>2+</sup>, Na<sup>+</sup>) and concentration, we systematically modulate the microgels' chemical and physical properties to control release rates of model compounds, including rhodamine B, methylene blue, and dextrans of various molecular weights. Additionally, a PEG-alginate composite microgel system is used to demonstrate the pre-programmed stepwise release of rhodamine B. These findings offer a straightforward strategy for postsynthetic manipulation of ionic microgels with controllable release performances, paving the way for advanced biomedical applications.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"2 5","pages":"312-321"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104843/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbe.5c00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel-based drug delivery systems hold significant clinical potential by enabling precise spatial and temporal control over therapeutic release, ranging from metabolites, macromolecules to other cellular and subcellular constructs. However, achieving programmable release of payloads with diverse molecular weights at distinct rates typically requires complex polymer designs that can compromise the accessibility and biocompatibility of the delivery system. We present a scalable method for producing injectable, micrometer-scale alginate hydrogel particles (microgels) with precisely tuned microstructures for multiplexed, programmable cargo release. Our approach integrates an established jetting technique with a simple postsynthesis ion-exchange process to fine-tune the cross-linked microstructure of alginate microgels. By varying cation type (Ca2+, Mg2+, Na+) and concentration, we systematically modulate the microgels' chemical and physical properties to control release rates of model compounds, including rhodamine B, methylene blue, and dextrans of various molecular weights. Additionally, a PEG-alginate composite microgel system is used to demonstrate the pre-programmed stepwise release of rhodamine B. These findings offer a straightforward strategy for postsynthetic manipulation of ionic microgels with controllable release performances, paving the way for advanced biomedical applications.

通过原位离子交换法从喷射打印的微凝胶颗粒中可编程释放货物。
基于水凝胶的药物输送系统具有重要的临床潜力,可以精确地控制从代谢物、大分子到其他细胞和亚细胞结构的治疗释放的空间和时间。然而,以不同速率实现不同分子量有效载荷的可编程释放通常需要复杂的聚合物设计,这可能会损害传递系统的可及性和生物相容性。我们提出了一种可扩展的方法,用于生产可注射的微米级海藻酸盐水凝胶颗粒(微凝胶),具有精确调谐的微结构,用于多路复用,可编程的货物释放。我们的方法将一种成熟的喷射技术与一个简单的合成后离子交换过程相结合,以微调海藻酸盐微凝胶的交联微观结构。通过改变阳离子类型(Ca2+, Mg2+, Na+)和浓度,我们系统地调节微凝胶的化学和物理性质,以控制模型化合物的释放速度,包括罗丹明B,亚甲基蓝和不同分子量的右旋糖酐。此外,一种聚乙二醇-海藻酸盐复合微凝胶系统被用来演示罗丹明b的预编程逐步释放。这些发现为具有可控释放性能的离子微凝胶的合成后操作提供了一种直接的策略,为先进的生物医学应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信