Zuoyi Zheng, Xifeng Chen, Rutian Zheng, Zhigang Yan, Long Li, Rirong Chen, Lifeng Li, Yongmei Liu, Yi Guan, Huachen Zhu
{"title":"Progressive Adaptation of Subtype H6N1 Avian Influenza Virus in Taiwan Enhances Mammalian Infectivity, Pathogenicity, and Transmissibility.","authors":"Zuoyi Zheng, Xifeng Chen, Rutian Zheng, Zhigang Yan, Long Li, Rirong Chen, Lifeng Li, Yongmei Liu, Yi Guan, Huachen Zhu","doi":"10.3390/v17050733","DOIUrl":null,"url":null,"abstract":"<p><p>The interspecies transmission of avian influenza viruses remains a significant public health concern. H6 viruses have gained attention following the first human infection by a chicken-origin H6N1 virus (A/Taiwan/02/2013, Hu/13), highlighting their zoonotic potential. To understand the evolutionary trajectory and mammalian adaptation of this Taiwan lineage, we compared two avian isolates (A/Chicken/Taiwan/CF19/2009, Ck/09; A/Chicken/Taiwan/2267/2012, Ck/12) and Hu/13 in vitro and in vivo. Hu/13 exhibited enhanced replication in MDCK cells, producing larger plaques and higher viral titers than Ck/09 and Ck/12. In BALB/c mice, Hu/13 demonstrated the highest pathogenicity and mortality, followed by Ck/12, while Ck/09 induced minimal morbidity. Hu/13 and Ck/12 replicated efficiently in respiratory tissues, eliciting robust cytokine responses and severe pulmonary lesions. In ferrets, Hu/13 showed relatively efficient transmission, infecting all direct physical-contact and two out of three airborne-contact ferrets, whereas Ck/09 failed to transmit. Histopathology confirmed escalating lung pathology from Ck/09 to Ck/12 and Hu/13. Whole-genome sequencing identified adaptive mutations in Hu/13 during ferret replication, though no canonical mammalian-adaptive changes (e.g., PB2-E627K or HA-Q226L) were detected. These findings demonstrate progressive mammalian adaptation, replication efficiency, and transmissibility within the Taiwan H6N1 lineage. Enhanced surveillance is crucial to monitor mammalian-adaptive mutations, informing pandemic preparedness and public health strategies.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 5","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17050733","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The interspecies transmission of avian influenza viruses remains a significant public health concern. H6 viruses have gained attention following the first human infection by a chicken-origin H6N1 virus (A/Taiwan/02/2013, Hu/13), highlighting their zoonotic potential. To understand the evolutionary trajectory and mammalian adaptation of this Taiwan lineage, we compared two avian isolates (A/Chicken/Taiwan/CF19/2009, Ck/09; A/Chicken/Taiwan/2267/2012, Ck/12) and Hu/13 in vitro and in vivo. Hu/13 exhibited enhanced replication in MDCK cells, producing larger plaques and higher viral titers than Ck/09 and Ck/12. In BALB/c mice, Hu/13 demonstrated the highest pathogenicity and mortality, followed by Ck/12, while Ck/09 induced minimal morbidity. Hu/13 and Ck/12 replicated efficiently in respiratory tissues, eliciting robust cytokine responses and severe pulmonary lesions. In ferrets, Hu/13 showed relatively efficient transmission, infecting all direct physical-contact and two out of three airborne-contact ferrets, whereas Ck/09 failed to transmit. Histopathology confirmed escalating lung pathology from Ck/09 to Ck/12 and Hu/13. Whole-genome sequencing identified adaptive mutations in Hu/13 during ferret replication, though no canonical mammalian-adaptive changes (e.g., PB2-E627K or HA-Q226L) were detected. These findings demonstrate progressive mammalian adaptation, replication efficiency, and transmissibility within the Taiwan H6N1 lineage. Enhanced surveillance is crucial to monitor mammalian-adaptive mutations, informing pandemic preparedness and public health strategies.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.