Simon Zhongyuan Tian, Yang Yang, Duo Ning, Ting Yu, Tong Gao, Yuqing Deng, Ke Fang, Yewen Xu, Kai Jing, Guangyu Huang, Gengzhan Chen, Pengfei Yin, Yiming Li, Fuxing Zeng, Ruilin Tian, Meizhen Zheng
{"title":"Landscape of the Epstein-Barr virus-host chromatin interactome and gene regulation.","authors":"Simon Zhongyuan Tian, Yang Yang, Duo Ning, Ting Yu, Tong Gao, Yuqing Deng, Ke Fang, Yewen Xu, Kai Jing, Guangyu Huang, Gengzhan Chen, Pengfei Yin, Yiming Li, Fuxing Zeng, Ruilin Tian, Meizhen Zheng","doi":"10.1038/s44318-025-00466-5","DOIUrl":null,"url":null,"abstract":"<p><p>The three-dimensional (3D) chromatin structure of Epstein-Barr virus (EBV) within host cells and the underlying mechanisms of chromatin interaction and gene regulation, particularly those involving EBV's noncoding RNAs (ncRNAs), have remained incompletely characterized. In this study, we employed state-of-the-art techniques of 3D genome mapping, including protein-associated chromatin interaction analysis with paired-end tag sequencing (ChIA-PET), RNA-associated chromatin interaction technique (RDD), and super-resolution microscopy, to delineate the spatial architecture of EBV in human lymphoblastoid cells. We systematically analyzed EBV-to-EBV (E-E), EBV-to-host (E-H), and host-to-host (H-H) interactions linked to host proteins and EBV RNAs. Our findings reveal that EBV utilizes host CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) to form distinct chromatin contact domains (CCDs) and RNAPII-associated interaction domains (RAIDs). The anchors of these chromatin domains serve as platforms for extensive interactions with host chromatin, thus modulating host gene expression. Notably, EBV ncRNAs, especially Epstein-Barr-encoded RNAs (EBERs), target and interact with less accessible regions of host chromatin to repress a subset of genes via the inhibition of RNAPII-associated chromatin loops. This process involves the cofactor nucleolin (NCL) and its RNA recognition motifs, and depletion of either NCL or EBERs alters expression of genes crucial for host infection control, immune response, and cell cycle regulation. These findings unveil a sophisticated interplay between EBV and host chromatin.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":" ","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-025-00466-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The three-dimensional (3D) chromatin structure of Epstein-Barr virus (EBV) within host cells and the underlying mechanisms of chromatin interaction and gene regulation, particularly those involving EBV's noncoding RNAs (ncRNAs), have remained incompletely characterized. In this study, we employed state-of-the-art techniques of 3D genome mapping, including protein-associated chromatin interaction analysis with paired-end tag sequencing (ChIA-PET), RNA-associated chromatin interaction technique (RDD), and super-resolution microscopy, to delineate the spatial architecture of EBV in human lymphoblastoid cells. We systematically analyzed EBV-to-EBV (E-E), EBV-to-host (E-H), and host-to-host (H-H) interactions linked to host proteins and EBV RNAs. Our findings reveal that EBV utilizes host CCCTC-binding factor (CTCF) and RNA polymerase II (RNAPII) to form distinct chromatin contact domains (CCDs) and RNAPII-associated interaction domains (RAIDs). The anchors of these chromatin domains serve as platforms for extensive interactions with host chromatin, thus modulating host gene expression. Notably, EBV ncRNAs, especially Epstein-Barr-encoded RNAs (EBERs), target and interact with less accessible regions of host chromatin to repress a subset of genes via the inhibition of RNAPII-associated chromatin loops. This process involves the cofactor nucleolin (NCL) and its RNA recognition motifs, and depletion of either NCL or EBERs alters expression of genes crucial for host infection control, immune response, and cell cycle regulation. These findings unveil a sophisticated interplay between EBV and host chromatin.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.