{"title":"HIF1A Regulates <i>Rhbg</i> Expression to Enhance Ammonia Excretion in Amur Ide (<i>Leuciscus waleckii</i>) Under Extreme Alkaline Conditions.","authors":"Xuefei Zhao, Yu Zhang, Shuqi Li, Suying Bai, Wei Zhang, Yanchun Xu, Yumei Chang","doi":"10.3390/biology14050498","DOIUrl":null,"url":null,"abstract":"<p><p>High-alkalinity water bodies can disrupt normal ammonia metabolism in fish, leading to ammonia poisoning. In China, there exists a highly tolerant group of Amur ide (<i>Leuciscus waleckii</i>) that can survive in extreme alkaline lakes with alkalinity up to 53.57 mM (pH 9.6), making it an excellent model for elucidating the high-alkalinity tolerance mechanism in fish. We have discovered that this species has evolved a special ammonia excretion mechanism to maintain ammonia efflux in high-alkalinity environments. Compared to the freshwater forms of Amur ide, the ammonia excretion protein RHBG plays a prominent role in the ammonia excretion process of the alkali forms of Amur ide; however, the regulatory mechanism of RHBG expression in fish remains unclear. Through DNA pull-down, RNA-Seq, qPCR, Western blotting, immunofluorescence, and dual-luciferase reporter assays, this study demonstrates that the transcription factor HIF1A can inversely regulate the expression of <i>Rhbg</i> by binding to its promoter region, thereby participating in the high-alkalinity adaptation process of fish. The findings of this study provide a theoretical basis for elucidating the ammonia excretion mechanism and revealing the alkalinity tolerance mechanism in fish.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050498","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-alkalinity water bodies can disrupt normal ammonia metabolism in fish, leading to ammonia poisoning. In China, there exists a highly tolerant group of Amur ide (Leuciscus waleckii) that can survive in extreme alkaline lakes with alkalinity up to 53.57 mM (pH 9.6), making it an excellent model for elucidating the high-alkalinity tolerance mechanism in fish. We have discovered that this species has evolved a special ammonia excretion mechanism to maintain ammonia efflux in high-alkalinity environments. Compared to the freshwater forms of Amur ide, the ammonia excretion protein RHBG plays a prominent role in the ammonia excretion process of the alkali forms of Amur ide; however, the regulatory mechanism of RHBG expression in fish remains unclear. Through DNA pull-down, RNA-Seq, qPCR, Western blotting, immunofluorescence, and dual-luciferase reporter assays, this study demonstrates that the transcription factor HIF1A can inversely regulate the expression of Rhbg by binding to its promoter region, thereby participating in the high-alkalinity adaptation process of fish. The findings of this study provide a theoretical basis for elucidating the ammonia excretion mechanism and revealing the alkalinity tolerance mechanism in fish.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.