{"title":"Hidden Threats: The Unnoticed Epidemic System of Pine Wilt Disease Driven by Sexually Mature <i>Monochamus</i> Beetles and Asymptomatic Trees.","authors":"Kazuyoshi Futai, Hideaki Ishiguro","doi":"10.3390/biology14050485","DOIUrl":null,"url":null,"abstract":"<p><p>Pine wilt disease, caused by the nematode <i>Bursaphelenchus xylophilus</i>, poses a significant threat to pine forests worldwide. Understanding the dynamics of its spread is crucial for effective disease management. In this study, we investigated the involvement of asymptomatic carrier trees in the expansion of pine wilt disease through a series of experiments. Cage-releasing experiments revealed that sexually immature Japanese pine sawyer beetles, <i>Monochamus alternatus</i>, feeding on healthy pine branches drops only a minimal number of nematodes (primary infection). However, sexually mature beetles, still harboring numerous nematodes, fly to weakened trees for breeding and extend their feeding activities to healthy pines around weakened trees, infecting them with nematodes and thus spreading the disease further. Inoculation experiments on field-planted black pine seedlings demonstrated that even a small number of nematodes can lead to a high occurrence of asymptomatic carrier trees. Our findings suggest that nematode infections transmitted by sexually mature <i>Monochamus</i> beetles significantly contribute to the expansion of pine wilt damage and play a crucial role in the persistence of asymptomatic carrier trees. This conclusion is based on cage-release experiments demonstrating nematode transmission by mature beetles and inoculation experiments highlighting the conditions leading to asymptomatic carrier trees.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108613/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050485","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pine wilt disease, caused by the nematode Bursaphelenchus xylophilus, poses a significant threat to pine forests worldwide. Understanding the dynamics of its spread is crucial for effective disease management. In this study, we investigated the involvement of asymptomatic carrier trees in the expansion of pine wilt disease through a series of experiments. Cage-releasing experiments revealed that sexually immature Japanese pine sawyer beetles, Monochamus alternatus, feeding on healthy pine branches drops only a minimal number of nematodes (primary infection). However, sexually mature beetles, still harboring numerous nematodes, fly to weakened trees for breeding and extend their feeding activities to healthy pines around weakened trees, infecting them with nematodes and thus spreading the disease further. Inoculation experiments on field-planted black pine seedlings demonstrated that even a small number of nematodes can lead to a high occurrence of asymptomatic carrier trees. Our findings suggest that nematode infections transmitted by sexually mature Monochamus beetles significantly contribute to the expansion of pine wilt damage and play a crucial role in the persistence of asymptomatic carrier trees. This conclusion is based on cage-release experiments demonstrating nematode transmission by mature beetles and inoculation experiments highlighting the conditions leading to asymptomatic carrier trees.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.