Unsupervised Clustering of Cell Populations in Germinal Centers Using Multiplexed Immunofluorescence.

IF 3.6 3区 生物学 Q1 BIOLOGY
Simon Burgermeister, Michail Orfanakis, Spiros Georgakis, Cloe Brenna, Helen Lindsay, Craig Fenwick, Giuseppe Pantaleo, Raphael Gottardo, Constantinos Petrovas
{"title":"Unsupervised Clustering of Cell Populations in Germinal Centers Using Multiplexed Immunofluorescence.","authors":"Simon Burgermeister, Michail Orfanakis, Spiros Georgakis, Cloe Brenna, Helen Lindsay, Craig Fenwick, Giuseppe Pantaleo, Raphael Gottardo, Constantinos Petrovas","doi":"10.3390/biology14050530","DOIUrl":null,"url":null,"abstract":"<p><p>Follicles (Fs)/Germinal Centers (GCs) in tonsils and lymph nodes are dynamic microenvironments where diverse immune cell populations interact for the development of antibody responses against pathogens. The accurate in situ phenotypic analysis of these immune cells is a prerequisite for the comphehensive understanding of GC development. In this study, we explore unsupervised clustering approaches for distinguishing cell populations within F/GCs using marker expression data. We evaluate multiple clustering algorithms and find that k-means clustering provides the most effective separation of distinct cell subsets. Additionally, we investigate the predictive potential of common GC markers (CD3, CD4, CD20 and BCL6) for PD-1 expression, an important immune checkpoint regulator. Our analysis demonstrates that PD-1 expression can be reliably inferred using these markers, suggesting potential applications for automated cell classification in immunological studies. This approach enhances our ability to analyze immune cell heterogeneity and may contribute to improved understanding of GC dynamics in health and disease. Our findings support the use of computational clustering for high-dimensional immune profiling.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12108741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050530","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Follicles (Fs)/Germinal Centers (GCs) in tonsils and lymph nodes are dynamic microenvironments where diverse immune cell populations interact for the development of antibody responses against pathogens. The accurate in situ phenotypic analysis of these immune cells is a prerequisite for the comphehensive understanding of GC development. In this study, we explore unsupervised clustering approaches for distinguishing cell populations within F/GCs using marker expression data. We evaluate multiple clustering algorithms and find that k-means clustering provides the most effective separation of distinct cell subsets. Additionally, we investigate the predictive potential of common GC markers (CD3, CD4, CD20 and BCL6) for PD-1 expression, an important immune checkpoint regulator. Our analysis demonstrates that PD-1 expression can be reliably inferred using these markers, suggesting potential applications for automated cell classification in immunological studies. This approach enhances our ability to analyze immune cell heterogeneity and may contribute to improved understanding of GC dynamics in health and disease. Our findings support the use of computational clustering for high-dimensional immune profiling.

利用多路免疫荧光技术对生发中心细胞群进行无监督聚类。
扁桃体和淋巴结中的卵泡/生发中心(GCs)是动态的微环境,不同的免疫细胞群在其中相互作用,产生针对病原体的抗体反应。对这些免疫细胞进行准确的原位表型分析是全面了解胃癌发展的先决条件。在这项研究中,我们探索了使用标记表达数据来区分F/ gc内细胞群体的无监督聚类方法。我们评估了多种聚类算法,发现k-means聚类可以最有效地分离不同的细胞子集。此外,我们研究了常见GC标志物(CD3、CD4、CD20和BCL6)对PD-1表达的预测潜力,PD-1是一种重要的免疫检查点调节因子。我们的分析表明,使用这些标记可以可靠地推断PD-1的表达,这表明在免疫学研究中自动细胞分类的潜在应用。这种方法增强了我们分析免疫细胞异质性的能力,并可能有助于提高对健康和疾病中GC动力学的理解。我们的研究结果支持使用计算聚类进行高维免疫分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信