Huijie Zhou, Tianqi Liu, Tan Zhang, Zhipeng Sun, Huan Xu, Tingting Zhang, Yashan Yin, Na Li, Ting Yan, Youyi Kuang
{"title":"Establishment and Characteristics of the Spermatogonial Stem Cell Line from the Yellow River Carp (<i>Cyprinus carpio haematopterus</i>).","authors":"Huijie Zhou, Tianqi Liu, Tan Zhang, Zhipeng Sun, Huan Xu, Tingting Zhang, Yashan Yin, Na Li, Ting Yan, Youyi Kuang","doi":"10.3390/biology14050536","DOIUrl":null,"url":null,"abstract":"<p><p>To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (<i>Cyprinus carpio</i>) varieties. However, traditional breeding methods are often time-consuming and inefficient, which poses challenges to the sustainable development of the carp aquaculture industry. The establishment of germ stem cell lines offers a crucial tool for the study of germ cells, genetic improvement, and species conservation. In this study, we successfully established a spermatogonial stem cell line (YRSSCs) from Yellow River carp (<i>Cyprinus carpio haematopterus</i>) that can be cultured in vitro for the long term. We optimized the culture conditions to maintain their self-renewal and differentiation capabilities. The results demonstrated that YRSSCs have a diploid karyotype and can stably proliferate for over a year in L-15 medium supplemented with 5 mmol/L HEPES, 50 μmol/L β-mercaptoethanol, 15% FBS, 2 ng/mL bFGF, 2 ng/mL LIF, 1% carp serum, 800 IU/mL penicillin, 0.8 mg/mL streptomycin, 2 μg/mL amphotericin B, 1% zebrafish embryo extract, and 1% glutamine at 30 °C in the absence of CO<sub>2</sub>. The cells exhibited a typical germ stem cell gene expression profile, with strong expression of the <i>vasa</i>, <i>plzf-a</i>, and <i>Oct4-a</i> genes. Additionally, this study found that YRSSCs possess the ability to differentiate in vitro and functionally colonize in vivo within recipient bodies. This research explored the establishment of YRSSCs and their differentiation potential both in vitro and in vivo, providing a novel strategy for the genetic improvement of aquaculture fish species through germ stem cell-based gene editing and transplantation technologies.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109047/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050536","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the growing consumer demands for improved fish meat quality, desirable morphological traits, and sustainable production practices, researchers have intensified efforts in the selective breeding and genetic improvement of carp (Cyprinus carpio) varieties. However, traditional breeding methods are often time-consuming and inefficient, which poses challenges to the sustainable development of the carp aquaculture industry. The establishment of germ stem cell lines offers a crucial tool for the study of germ cells, genetic improvement, and species conservation. In this study, we successfully established a spermatogonial stem cell line (YRSSCs) from Yellow River carp (Cyprinus carpio haematopterus) that can be cultured in vitro for the long term. We optimized the culture conditions to maintain their self-renewal and differentiation capabilities. The results demonstrated that YRSSCs have a diploid karyotype and can stably proliferate for over a year in L-15 medium supplemented with 5 mmol/L HEPES, 50 μmol/L β-mercaptoethanol, 15% FBS, 2 ng/mL bFGF, 2 ng/mL LIF, 1% carp serum, 800 IU/mL penicillin, 0.8 mg/mL streptomycin, 2 μg/mL amphotericin B, 1% zebrafish embryo extract, and 1% glutamine at 30 °C in the absence of CO2. The cells exhibited a typical germ stem cell gene expression profile, with strong expression of the vasa, plzf-a, and Oct4-a genes. Additionally, this study found that YRSSCs possess the ability to differentiate in vitro and functionally colonize in vivo within recipient bodies. This research explored the establishment of YRSSCs and their differentiation potential both in vitro and in vivo, providing a novel strategy for the genetic improvement of aquaculture fish species through germ stem cell-based gene editing and transplantation technologies.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.