{"title":"ACE- and DPP-IV-Inhibitory Peptides from Bambara Groundnut Hydrolysate: Elucidation Using Computational Tools and Molecular Docking.","authors":"Jirakrit Saetang, Thaiyawat Haewphet, Krisana Nilsuwan, Soottawat Benjakul","doi":"10.3390/biology14050511","DOIUrl":null,"url":null,"abstract":"<p><p>Hypertension and type 2 diabetes are the major metabolic syndromes, often managed using synthetic ACE and DPP-IV inhibitors that may cause adverse effects on health. This study investigated Bambara groundnut protein hydrolysates as a natural source of dual ACE- and DPP-IV-inhibitory peptides. Protein isolates were hydrolyzed using Flavourzyme, and the resulting peptides were fractionated using membranes with different molecular weight cut-offs. Those fractions were then analyzed for enzyme inhibition. Peptides were identified by LC-MS/MS and screened using PeptideRanker and BIOPEP-UWM, followed by molecular docking against ACE (PDB: 1O8A) and DPP-IV (PDB: 1NU6). The >10 kDa and 5-10 kDa fractions showed the highest ACE- and DPP-IV-inhibitory activities, respectively. Some peptides such as YKDGLYSPHW, LPVSTPGKF, and EPWWPK displayed strong binding affinities (ΔG: -10.2 to -11.3 kcal/mol for ACE, -8.6 to -9.1 kcal/mol for DPP-IV) and interacted with key catalytic residues, including His387 and Glu411 in ACE, and Ser630, Glu205, and Phe357 in DPP-IV. These findings highlight the potential of Bambara groundnut hydrolysates or peptides as a source of natural ACE and DPP-IV inhibitors.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109513/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050511","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hypertension and type 2 diabetes are the major metabolic syndromes, often managed using synthetic ACE and DPP-IV inhibitors that may cause adverse effects on health. This study investigated Bambara groundnut protein hydrolysates as a natural source of dual ACE- and DPP-IV-inhibitory peptides. Protein isolates were hydrolyzed using Flavourzyme, and the resulting peptides were fractionated using membranes with different molecular weight cut-offs. Those fractions were then analyzed for enzyme inhibition. Peptides were identified by LC-MS/MS and screened using PeptideRanker and BIOPEP-UWM, followed by molecular docking against ACE (PDB: 1O8A) and DPP-IV (PDB: 1NU6). The >10 kDa and 5-10 kDa fractions showed the highest ACE- and DPP-IV-inhibitory activities, respectively. Some peptides such as YKDGLYSPHW, LPVSTPGKF, and EPWWPK displayed strong binding affinities (ΔG: -10.2 to -11.3 kcal/mol for ACE, -8.6 to -9.1 kcal/mol for DPP-IV) and interacted with key catalytic residues, including His387 and Glu411 in ACE, and Ser630, Glu205, and Phe357 in DPP-IV. These findings highlight the potential of Bambara groundnut hydrolysates or peptides as a source of natural ACE and DPP-IV inhibitors.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.