{"title":"Neurofeedback and Brain-Computer Interface-Based Methods for Post-stroke Rehabilitation.","authors":"Estate Sokhadze","doi":"10.1007/s10484-025-09715-z","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke has been identified as a major public health concern and one of the leading causes contributing to long-term neurological disability. People suffering from stroke often present with upper limb paralysis impacting their quality of life and ability to work. Motor impairments in the upper limb represent the most prevalent symptoms in stroke sufferers. There is a need to develop novel intervention strategies that can be used as stand-alone techniques or combined with current gold standard post-stroke rehabilitation procedures. There was reported evidence about the utility of rehabilitation protocols with motor imagery (MI) used either alone or in combination with physical therapy resulting in enhancement of post-stroke functional recovery of paralyzed limbs. Brain-Computer Interface (BCI) and EEG neurofeedback (NFB) training can be considered as novel technologies to be used in conjunction with MI and motor attempt (MA) to enable direct translation of EEG induced by imagery or attempted movement to arrange training that has potential to enhance functional motor recovery of upper limbs after stroke. There are reported several controlled trials and multiple cases series that have shown that stroke patients are able to learn modulation of their EEG sensorimotor rhythm in BCI mode to control external devices, including exoskeletons, prosthetics, and such interventions were shown promise in facilitation of recovery in stroke sufferers. A review of the literature suggests there has been significant progress in the development of new methods for post-stroke rehabilitation procedures. There are reviewed findings supportive of NFB and BCI methods as evidence-based treatment for post-stroke motor function recovery.</p>","PeriodicalId":47506,"journal":{"name":"Applied Psychophysiology and Biofeedback","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychophysiology and Biofeedback","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10484-025-09715-z","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, CLINICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke has been identified as a major public health concern and one of the leading causes contributing to long-term neurological disability. People suffering from stroke often present with upper limb paralysis impacting their quality of life and ability to work. Motor impairments in the upper limb represent the most prevalent symptoms in stroke sufferers. There is a need to develop novel intervention strategies that can be used as stand-alone techniques or combined with current gold standard post-stroke rehabilitation procedures. There was reported evidence about the utility of rehabilitation protocols with motor imagery (MI) used either alone or in combination with physical therapy resulting in enhancement of post-stroke functional recovery of paralyzed limbs. Brain-Computer Interface (BCI) and EEG neurofeedback (NFB) training can be considered as novel technologies to be used in conjunction with MI and motor attempt (MA) to enable direct translation of EEG induced by imagery or attempted movement to arrange training that has potential to enhance functional motor recovery of upper limbs after stroke. There are reported several controlled trials and multiple cases series that have shown that stroke patients are able to learn modulation of their EEG sensorimotor rhythm in BCI mode to control external devices, including exoskeletons, prosthetics, and such interventions were shown promise in facilitation of recovery in stroke sufferers. A review of the literature suggests there has been significant progress in the development of new methods for post-stroke rehabilitation procedures. There are reviewed findings supportive of NFB and BCI methods as evidence-based treatment for post-stroke motor function recovery.
期刊介绍:
Applied Psychophysiology and Biofeedback is an international, interdisciplinary journal devoted to study of the interrelationship of physiological systems, cognition, social and environmental parameters, and health. Priority is given to original research, basic and applied, which contributes to the theory, practice, and evaluation of applied psychophysiology and biofeedback. Submissions are also welcomed for consideration in several additional sections that appear in the journal. They consist of conceptual and theoretical articles; evaluative reviews; the Clinical Forum, which includes separate categories for innovative case studies, clinical replication series, extended treatment protocols, and clinical notes and observations; the Discussion Forum, which includes a series of papers centered around a topic of importance to the field; Innovations in Instrumentation; Letters to the Editor, commenting on issues raised in articles previously published in the journal; and select book reviews. Applied Psychophysiology and Biofeedback is the official publication of the Association for Applied Psychophysiology and Biofeedback.