{"title":"Integration of Single-Cell and Bulk Transcriptome to Reveal an Endothelial Transition Signature Predicting Bladder Cancer Prognosis.","authors":"Jinyu Yang, Wangxi Wu, Xiaoli Tang","doi":"10.3390/biology14050486","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial cells (ECs) are critical drivers of tumour progression, and their angiogenic process has been widely studied. However, the post-angiogenic transition of tip endothelial cells after sprouting remains insufficiently characterised. In this study, we utilised single-cell RNA sequencing analyses to identify a novel EC transition signature associated with endothelial permeability, migration, metabolism, and vascular maturation. Within the transition pathway, we discovered a critical EC subpopulation, termed tip-to-capillary ECs (TC-ECs), that was enriched in tumour tissues. Comparative analyses of TC-ECs with tip and capillary ECs revealed distinct differences in pathway activity, cellular communication, and transcription factor activity. The EC transition signature demonstrated substantial prognostic significance, validated across multiple cancer cohorts from TCGA data, particularly in bladder cancer. Subsequently, we constructed a robust prognostic model for bladder cancer by integrating the EC transition signature with multiple machine-learning techniques. Compared with 31 existing models across the TCGA-BLCA, GSE32894, GSE32548, and GSE70691 cohorts, our model exhibited superior predictive performance. Stratification analysis identified significant differences between different risk groups regarding pathway activity, cellular infiltration, and therapeutic sensitivity. In conclusion, our comprehensive investigation identified a novel EC transition signature and developed a prognostic model for patient stratification, offering new insights into endothelial heterogeneity, angiogenesis regulation, and precision medicine.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050486","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial cells (ECs) are critical drivers of tumour progression, and their angiogenic process has been widely studied. However, the post-angiogenic transition of tip endothelial cells after sprouting remains insufficiently characterised. In this study, we utilised single-cell RNA sequencing analyses to identify a novel EC transition signature associated with endothelial permeability, migration, metabolism, and vascular maturation. Within the transition pathway, we discovered a critical EC subpopulation, termed tip-to-capillary ECs (TC-ECs), that was enriched in tumour tissues. Comparative analyses of TC-ECs with tip and capillary ECs revealed distinct differences in pathway activity, cellular communication, and transcription factor activity. The EC transition signature demonstrated substantial prognostic significance, validated across multiple cancer cohorts from TCGA data, particularly in bladder cancer. Subsequently, we constructed a robust prognostic model for bladder cancer by integrating the EC transition signature with multiple machine-learning techniques. Compared with 31 existing models across the TCGA-BLCA, GSE32894, GSE32548, and GSE70691 cohorts, our model exhibited superior predictive performance. Stratification analysis identified significant differences between different risk groups regarding pathway activity, cellular infiltration, and therapeutic sensitivity. In conclusion, our comprehensive investigation identified a novel EC transition signature and developed a prognostic model for patient stratification, offering new insights into endothelial heterogeneity, angiogenesis regulation, and precision medicine.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.