Comparison of Tumor Cell Responses to Different Radiotherapy Techniques: Three-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric Modulated Arc Therapy (VMAT), and Helical Tomotherapy (HT).

IF 3.6 3区 生物学 Q1 BIOLOGY
Phanwadee Kasetthamrongrat, Rinwarat Phumsankhot, Aphidet Duangya, Anirut Watcharawipha, Wannapha Nobnop, Narongchai Autsavapromporn
{"title":"Comparison of Tumor Cell Responses to Different Radiotherapy Techniques: Three-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric Modulated Arc Therapy (VMAT), and Helical Tomotherapy (HT).","authors":"Phanwadee Kasetthamrongrat, Rinwarat Phumsankhot, Aphidet Duangya, Anirut Watcharawipha, Wannapha Nobnop, Narongchai Autsavapromporn","doi":"10.3390/biology14050529","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, advanced RT techniques such as VMAT and HT are being developed to optimize tumor coverage while minimizing radiation exposure to the surrounding organs that are at risk. Despite their growing clinical use, comparative studies evaluating the dosimetric and radiobiological effects of these modalities remain limited. In this study, A549, HeLa, and HepG2 cells were exposed to a single 2 Gy dose, using three RT techniques (3D-CRT, dual arc VMAT, and HT). Treatment plans were generated using a water phantom to ensure consistent target coverage and comparable dosimetric parameters across the techniques. Multiple radiobiological endpoints were assessed to evaluate the cellular responses. Although all three techniques yielded similar dosimetric parameters without statistically significant differences, the biological responses varied among the cell lines. Notably, VMAT and HT demonstrated superior tumor cell suppression compared to 3D-CRT. This was likely due to their enhanced dose conformity and modulation precision, which potentially led to improved tumor cell killing. These findings highlight the importance of integrating radiobiological assessments with physical dose metrics to inform the clinical application of advanced RT technologies. However, this study had several limitations. The use of a single radiation dose limited its clinical relevance, and the immediate post-irradiation assessments may not have captured delayed biological responses. Additionally, the small number of replicates may have reduced the study's statistical power. Future studies incorporating dose fractionation schemes, time course analyses, and larger sample sizes are warranted to better simulate clinical conditions and further elucidate the radiobiological effects of advanced RT techniques.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109413/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050529","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, advanced RT techniques such as VMAT and HT are being developed to optimize tumor coverage while minimizing radiation exposure to the surrounding organs that are at risk. Despite their growing clinical use, comparative studies evaluating the dosimetric and radiobiological effects of these modalities remain limited. In this study, A549, HeLa, and HepG2 cells were exposed to a single 2 Gy dose, using three RT techniques (3D-CRT, dual arc VMAT, and HT). Treatment plans were generated using a water phantom to ensure consistent target coverage and comparable dosimetric parameters across the techniques. Multiple radiobiological endpoints were assessed to evaluate the cellular responses. Although all three techniques yielded similar dosimetric parameters without statistically significant differences, the biological responses varied among the cell lines. Notably, VMAT and HT demonstrated superior tumor cell suppression compared to 3D-CRT. This was likely due to their enhanced dose conformity and modulation precision, which potentially led to improved tumor cell killing. These findings highlight the importance of integrating radiobiological assessments with physical dose metrics to inform the clinical application of advanced RT technologies. However, this study had several limitations. The use of a single radiation dose limited its clinical relevance, and the immediate post-irradiation assessments may not have captured delayed biological responses. Additionally, the small number of replicates may have reduced the study's statistical power. Future studies incorporating dose fractionation schemes, time course analyses, and larger sample sizes are warranted to better simulate clinical conditions and further elucidate the radiobiological effects of advanced RT techniques.

肿瘤细胞对不同放疗技术的反应比较:三维适形放疗(3D-CRT),体积调制电弧治疗(VMAT)和螺旋断层治疗(HT)。
目前,正在开发先进的放射治疗技术,如VMAT和HT,以优化肿瘤覆盖范围,同时最大限度地减少对周围有危险器官的辐射暴露。尽管它们的临床应用越来越多,但评估这些模式的剂量学和放射生物学效应的比较研究仍然有限。在这项研究中,A549, HeLa和HepG2细胞暴露于单一的2gy剂量,使用三种放射治疗技术(3D-CRT,双弧VMAT和HT)。使用水模体生成治疗计划,以确保一致的目标覆盖范围和跨技术的可比剂量学参数。对多个放射生物学终点进行评估,以评估细胞反应。虽然这三种技术产生了相似的剂量学参数,但没有统计学上的显著差异,但不同细胞系的生物学反应不同。值得注意的是,与3D-CRT相比,VMAT和HT表现出更好的肿瘤细胞抑制。这可能是由于它们增强了剂量一致性和调节精度,这可能导致肿瘤细胞杀伤能力的提高。这些发现强调了将放射生物学评估与物理剂量计量相结合的重要性,从而为先进放射治疗技术的临床应用提供信息。然而,这项研究有一些局限性。单一辐射剂量的使用限制了它的临床意义,而且辐射后立即进行的评估可能没有捕捉到延迟的生物反应。此外,少量的重复可能降低了研究的统计能力。未来的研究将纳入剂量分割方案、时间过程分析和更大的样本量,以更好地模拟临床条件,并进一步阐明先进放射治疗技术的放射生物学效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信