Billions of people exposed to increasing heat but decreasing greenness from 2000 to 2022.

IF 33.2 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
The Innovation Pub Date : 2025-03-07 eCollection Date: 2025-05-05 DOI:10.1016/j.xinn.2025.100870
Tingting Ye, Rongbin Xu, Wenzhong Huang, Zhengyu Yang, Pei Yu, Wenhua Yu, Yanming Liu, Yao Wu, Bo Wen, Yiwen Zhang, Jaime E Hart, Mark Nieuwenhuijsen, Michael J Abramson, Yuming Guo, Shanshan Li
{"title":"Billions of people exposed to increasing heat but decreasing greenness from 2000 to 2022.","authors":"Tingting Ye, Rongbin Xu, Wenzhong Huang, Zhengyu Yang, Pei Yu, Wenhua Yu, Yanming Liu, Yao Wu, Bo Wen, Yiwen Zhang, Jaime E Hart, Mark Nieuwenhuijsen, Michael J Abramson, Yuming Guo, Shanshan Li","doi":"10.1016/j.xinn.2025.100870","DOIUrl":null,"url":null,"abstract":"<p><p>Rising heat stress due to climate warming poses a significant threat to human health, and greenness offers a nature-based solution to mitigate heat-related health impacts and enhance resilience. Although global greenness has increased, it remains unclear whether these trends align with the population's heat mitigation needs. In this study, we integrated spatially resolved demographic data with satellite-derived greenness metric and reanalysis-based heat stress data to construct a global profile of joint exposure at 1 × 1 km resolution from 2000 to 2022. We found that 69.3% of global populated areas and 41.3% of the global population (∼2.9 billion people) were exposed to increasing heat stress but decreasing greenness (IHDG), representing the most concerning situation for heat mitigation. Urban populations were disproportionately affected, with 50.8% exposed compared to 27.1% in rural areas. Low- and middle-income countries exhibited more pronounced trends of increasing heat stress and bore the greatest burden from IHDG, accounting for 85% of total exposed populations. Moreover, there was a notable demographic shift in IHDG-exposed populations toward older groups, exacerbating the heat mitigation crisis. This study advances the understanding of the joint dynamics of heat stress and greenness and provides a profile of population exposure at a fine grid level. By highlighting the scale of IHDG conditions, our findings emphasize the urgent need to address this environmental challenge and a significant opportunity for improving greenness to mitigate increasing heat globally. The spatially detailed assessment maps offer essential data for informed decision-making.</p>","PeriodicalId":36121,"journal":{"name":"The Innovation","volume":"6 5","pages":"100870"},"PeriodicalIF":33.2000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Innovation","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1016/j.xinn.2025.100870","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/5 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rising heat stress due to climate warming poses a significant threat to human health, and greenness offers a nature-based solution to mitigate heat-related health impacts and enhance resilience. Although global greenness has increased, it remains unclear whether these trends align with the population's heat mitigation needs. In this study, we integrated spatially resolved demographic data with satellite-derived greenness metric and reanalysis-based heat stress data to construct a global profile of joint exposure at 1 × 1 km resolution from 2000 to 2022. We found that 69.3% of global populated areas and 41.3% of the global population (∼2.9 billion people) were exposed to increasing heat stress but decreasing greenness (IHDG), representing the most concerning situation for heat mitigation. Urban populations were disproportionately affected, with 50.8% exposed compared to 27.1% in rural areas. Low- and middle-income countries exhibited more pronounced trends of increasing heat stress and bore the greatest burden from IHDG, accounting for 85% of total exposed populations. Moreover, there was a notable demographic shift in IHDG-exposed populations toward older groups, exacerbating the heat mitigation crisis. This study advances the understanding of the joint dynamics of heat stress and greenness and provides a profile of population exposure at a fine grid level. By highlighting the scale of IHDG conditions, our findings emphasize the urgent need to address this environmental challenge and a significant opportunity for improving greenness to mitigate increasing heat globally. The spatially detailed assessment maps offer essential data for informed decision-making.

从2000年到2022年,数十亿人暴露在越来越热的环境中,但绿色环境却在减少。
气候变暖导致的热应激上升对人类健康构成了重大威胁,绿色提供了一种基于自然的解决方案,以减轻与热相关的健康影响并增强恢复力。尽管全球绿化有所增加,但尚不清楚这些趋势是否符合人口的减热需求。在这项研究中,我们将空间分辨率的人口统计数据与卫星衍生的绿色度量和基于再分析的热应力数据相结合,构建了2000年至2022年1 × 1公里分辨率的联合暴露全球剖面图。我们发现,全球69.3%的人口地区和41.3%的全球人口(约29亿人)暴露于热应激增加但绿色度(IHDG)下降的环境中,这是最令人担忧的热缓解情况。城市人口受到的影响不成比例,50.8%的人受到影响,而农村地区的这一比例为27.1%。低收入和中等收入国家表现出更明显的热应激增加趋势,并承担了IHDG的最大负担,占总暴露人口的85%。此外,暴露于ihdg的人群中有明显的人口结构转变,向老年群体转变,加剧了缓解高温的危机。这项研究促进了对热应力和绿化联合动力学的理解,并提供了精细网格水平上的人口暴露概况。通过强调IHDG条件的规模,我们的研究结果强调了解决这一环境挑战的迫切需要,以及改善绿色以缓解全球日益增加的热量的重要机会。空间上详细的评估地图为知情决策提供了必要的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Innovation
The Innovation MULTIDISCIPLINARY SCIENCES-
CiteScore
38.30
自引率
1.20%
发文量
134
审稿时长
6 weeks
期刊介绍: The Innovation is an interdisciplinary journal that aims to promote scientific application. It publishes cutting-edge research and high-quality reviews in various scientific disciplines, including physics, chemistry, materials, nanotechnology, biology, translational medicine, geoscience, and engineering. The journal adheres to the peer review and publishing standards of Cell Press journals. The Innovation is committed to serving scientists and the public. It aims to publish significant advances promptly and provides a transparent exchange platform. The journal also strives to efficiently promote the translation from scientific discovery to technological achievements and rapidly disseminate scientific findings worldwide. Indexed in the following databases, The Innovation has visibility in Scopus, Directory of Open Access Journals (DOAJ), Web of Science, Emerging Sources Citation Index (ESCI), PubMed Central, Compendex (previously Ei index), INSPEC, and CABI A&I.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信