Lorenzo Caselli, Lisa De Pasquale, Rossella Palumbo, Silvia Ricchiuto, Monica Montanari, Sebastiano Rontauroli, Alessandra Ottani, Ruggiero Norfo, Tommaso Zanocco-Marani, Alexis Grande
{"title":"Supra-Physiological Levels of Magnesium Counteract the Inhibitory Effect of Zoledronate on RANKL-Dependent Osteoclastogenesis.","authors":"Lorenzo Caselli, Lisa De Pasquale, Rossella Palumbo, Silvia Ricchiuto, Monica Montanari, Sebastiano Rontauroli, Alessandra Ottani, Ruggiero Norfo, Tommaso Zanocco-Marani, Alexis Grande","doi":"10.3390/biology14050533","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphosphonates (BPs) are drugs used to cure metabolic diseases like osteoporosis and oncological conditions, such as multiple myeloma and bone metastases. The pharmacological activity of these compounds is mediated by their capacity to induce a systemic osteoclast depletion, finally resulting in reduced bone resorption. In spite of their efficacy, the clinical application of BPs is sometimes associated with a frightening side effect known as osteonecrosis of the jaw (ONJ). In principle, a therapeutic approach able to elicit the local re-activation of osteoclast production could counteract the onset of ONJ and promote the healing of its lesions. Using a vitamin D3-dependent model of osteoclast differentiation, it has been previously demonstrated that when used at supra-physiological concentrations, magnesium strongly favors the process under consideration, and its effect is furtherly enhanced by the presence of a BP called zoledronate. Here, we show that similar results can be obtained in a RANKL-dependent model of osteoclast differentiation, suggesting that a topical therapy based on magnesium may be also suitable for ONJ determined by denosumab in light of the ability of this monoclonal antibody to target RANKL.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12109320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14050533","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bisphosphonates (BPs) are drugs used to cure metabolic diseases like osteoporosis and oncological conditions, such as multiple myeloma and bone metastases. The pharmacological activity of these compounds is mediated by their capacity to induce a systemic osteoclast depletion, finally resulting in reduced bone resorption. In spite of their efficacy, the clinical application of BPs is sometimes associated with a frightening side effect known as osteonecrosis of the jaw (ONJ). In principle, a therapeutic approach able to elicit the local re-activation of osteoclast production could counteract the onset of ONJ and promote the healing of its lesions. Using a vitamin D3-dependent model of osteoclast differentiation, it has been previously demonstrated that when used at supra-physiological concentrations, magnesium strongly favors the process under consideration, and its effect is furtherly enhanced by the presence of a BP called zoledronate. Here, we show that similar results can be obtained in a RANKL-dependent model of osteoclast differentiation, suggesting that a topical therapy based on magnesium may be also suitable for ONJ determined by denosumab in light of the ability of this monoclonal antibody to target RANKL.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.