Jianlei Jia, Pengjia Bao, Qinran Yu, Ning Li, Hao Ren, Qian Chen, Ping Yan
{"title":"<i>Lactobacillus</i> Re-Engineers Gut Microbiota to Overcome <i>E. coli</i> Colonization Resistance in Mice.","authors":"Jianlei Jia, Pengjia Bao, Qinran Yu, Ning Li, Hao Ren, Qian Chen, Ping Yan","doi":"10.3390/vetsci12050484","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal health and functionality of animals play pivotal roles in nutrient digestion and absorption, as well as in maintaining defense against pathogenic invasions. These biological processes are modulated by various determinants, including husbandry conditions, dietary composition, and gut microbial ecology. The excessive use of anthropogenic antibiotics may disrupt intestinal microbiota composition, potentially leading to dysbiosis that directly compromises host homeostasis. While <i>Lactobacillus</i> species are recognized for their immunomodulatory properties, their precise mechanisms in regulating host anti-inflammatory gene expression and influencing mucosal layer maturation, particularly regarding <i>E. coli</i> colonization resistance, require further elucidation. To investigate the regulatory mechanisms of <i>Lactobacillus</i> in relation to intestinal architecture and function during <i>E. coli</i> infection, we established a colonic infection model using Bal b/c mice, conducting systematic analyses of intestinal morphology, inflammatory mediator profiles, and microbial community dynamics. Our results demonstrate that <i>Lactobacillus</i> supplementation (<i>Pediococcus acidilactici</i>) effectively mitigated <i>E. coli</i> O78-induced enteritis, with co-administration during infection facilitating the restoration of physiological parameters, including body mass, intestinal histoarchitecture, and microbial metabolic functions. Microbiome profiling revealed that the <i>Lactobacillus</i> intervention significantly elevated <i>Lactococcus</i> abundance while reducing <i>Weissella</i> populations (<i>p</i> < 0.05), concurrently enhancing metabolic pathways related to nutrient assimilation and environmental signal processing (including translation mechanisms, ribosomal biogenesis, amino acid transport metabolism, and energy transduction systems; <i>p</i> < 0.05). Mechanistically, <i>Lactobacillus</i> administration attenuated <i>E. coli</i>-induced intestinal pathology through multiple pathways: downregulating pro-inflammatory cytokine expression (IL-1β, IL-1α, and TNF-α), upregulating epithelial junctional complexes (Occludin, Claudin-1, and ZO-1), and stimulating mucin biosynthesis (MUC1 and MUC2; <i>p</i> < 0.05). These modifications collectively enhanced mucosal barrier integrity and promoted epithelial maturation. This investigation advances our comprehension of microbiota-host crosstalk during enteropathogenic infections under probiotic intervention, offering valuable insights for developing novel nutritional strategies and microbial management protocols in animal husbandry.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12050484","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The intestinal health and functionality of animals play pivotal roles in nutrient digestion and absorption, as well as in maintaining defense against pathogenic invasions. These biological processes are modulated by various determinants, including husbandry conditions, dietary composition, and gut microbial ecology. The excessive use of anthropogenic antibiotics may disrupt intestinal microbiota composition, potentially leading to dysbiosis that directly compromises host homeostasis. While Lactobacillus species are recognized for their immunomodulatory properties, their precise mechanisms in regulating host anti-inflammatory gene expression and influencing mucosal layer maturation, particularly regarding E. coli colonization resistance, require further elucidation. To investigate the regulatory mechanisms of Lactobacillus in relation to intestinal architecture and function during E. coli infection, we established a colonic infection model using Bal b/c mice, conducting systematic analyses of intestinal morphology, inflammatory mediator profiles, and microbial community dynamics. Our results demonstrate that Lactobacillus supplementation (Pediococcus acidilactici) effectively mitigated E. coli O78-induced enteritis, with co-administration during infection facilitating the restoration of physiological parameters, including body mass, intestinal histoarchitecture, and microbial metabolic functions. Microbiome profiling revealed that the Lactobacillus intervention significantly elevated Lactococcus abundance while reducing Weissella populations (p < 0.05), concurrently enhancing metabolic pathways related to nutrient assimilation and environmental signal processing (including translation mechanisms, ribosomal biogenesis, amino acid transport metabolism, and energy transduction systems; p < 0.05). Mechanistically, Lactobacillus administration attenuated E. coli-induced intestinal pathology through multiple pathways: downregulating pro-inflammatory cytokine expression (IL-1β, IL-1α, and TNF-α), upregulating epithelial junctional complexes (Occludin, Claudin-1, and ZO-1), and stimulating mucin biosynthesis (MUC1 and MUC2; p < 0.05). These modifications collectively enhanced mucosal barrier integrity and promoted epithelial maturation. This investigation advances our comprehension of microbiota-host crosstalk during enteropathogenic infections under probiotic intervention, offering valuable insights for developing novel nutritional strategies and microbial management protocols in animal husbandry.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.