Katharina Gerhards, Sabrina Becker, Josef Kühling, Joel Mickan, Mirjam Lechner, Hermann Willems, Gerald Reiner
{"title":"Fine Mapping Identifies Candidate Genes Associated with Swine Inflammation and Necrosis Syndrome.","authors":"Katharina Gerhards, Sabrina Becker, Josef Kühling, Joel Mickan, Mirjam Lechner, Hermann Willems, Gerald Reiner","doi":"10.3390/vetsci12050508","DOIUrl":null,"url":null,"abstract":"<p><p>Swine inflammation and necrosis syndrome (SINS) is a widespread disease in pigs, causing pain, suffering, and damage. Inflammation is documented at different levels based on clinical signs, histopathology, clinical chemistry, metabolomics and transcriptomics. The influence of sow and boar, as well as a heritability of around 0.3, suggest a genetic component to the disease. The aim of the present study was to identify functional single nucleotide polymorphisms (SNPs) in the vicinity of gene markers previously mapped using GWAS. DNA samples were available from 234 already phenotyped piglets. These animals were re-sequenced with additional prior enrichment. The nine selected chromosomal regions cover a total length of 22 Mbp. The genome-wide association study (GWAS) revealed two series with a total of 15 significant missense polymorphisms on chromosomes 11, 14, and 15. The homozygous genotypes of the most discriminating SNPs in series 1 resulted in SINS scores of 3.5 and 17.9, respectively. Despite the partial linkage of the SNPs, interesting candidate genes were defined. The results allow a significant narrowing of the possible candidate genes for understanding the pathogenesis of SINS and for future use in selection breeding to overcome the syndrome. Further studies should be carried out on larger animal populations.</p>","PeriodicalId":23694,"journal":{"name":"Veterinary Sciences","volume":"12 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115691/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Sciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/vetsci12050508","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Swine inflammation and necrosis syndrome (SINS) is a widespread disease in pigs, causing pain, suffering, and damage. Inflammation is documented at different levels based on clinical signs, histopathology, clinical chemistry, metabolomics and transcriptomics. The influence of sow and boar, as well as a heritability of around 0.3, suggest a genetic component to the disease. The aim of the present study was to identify functional single nucleotide polymorphisms (SNPs) in the vicinity of gene markers previously mapped using GWAS. DNA samples were available from 234 already phenotyped piglets. These animals were re-sequenced with additional prior enrichment. The nine selected chromosomal regions cover a total length of 22 Mbp. The genome-wide association study (GWAS) revealed two series with a total of 15 significant missense polymorphisms on chromosomes 11, 14, and 15. The homozygous genotypes of the most discriminating SNPs in series 1 resulted in SINS scores of 3.5 and 17.9, respectively. Despite the partial linkage of the SNPs, interesting candidate genes were defined. The results allow a significant narrowing of the possible candidate genes for understanding the pathogenesis of SINS and for future use in selection breeding to overcome the syndrome. Further studies should be carried out on larger animal populations.
期刊介绍:
Veterinary Sciences is an international and interdisciplinary scholarly open access journal. It publishes original that are relevant to any field of veterinary sciences, including prevention, diagnosis and treatment of disease, disorder and injury in animals. This journal covers almost all topics related to animal health and veterinary medicine. Research fields of interest include but are not limited to: anaesthesiology anatomy bacteriology biochemistry cardiology dentistry dermatology embryology endocrinology epidemiology genetics histology immunology microbiology molecular biology mycology neurobiology oncology ophthalmology parasitology pathology pharmacology physiology radiology surgery theriogenology toxicology virology.