Sai Teja Potu, Rachana Niranjan Murthy, Akhil Thomas, Lokesh Mishra, Natalie Prange, Ali Riza Durmaz
{"title":"Ontology-conformal recognition of materials entities using language models.","authors":"Sai Teja Potu, Rachana Niranjan Murthy, Akhil Thomas, Lokesh Mishra, Natalie Prange, Ali Riza Durmaz","doi":"10.1038/s41598-025-03619-y","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting structured and semantically annotated materials information from unstructured scientific literature is a crucial step toward constructing machine-interpretable knowledge graphs and accelerating data-driven materials research. This is especially important in materials science, which is adversely affected by data scarcity. Data scarcity further motivates employing solutions such as foundation language models for extracting information which can in principle address several subtasks of the information extraction problem in a range of domains without the need of generating costly large-scale annotated datasets for each downstream task. However, foundation language models struggle with tasks like Named Entity Recognition (NER) due to domain-specific terminologies, fine-grained entities, and semantic ambiguity. The issue is even more pronounced when entities must map directly to pre-existing domain ontologies. This work aims to assess whether foundation large language models (LLMs) can successfully perform ontology-conformal NER in the materials mechanics and fatigue domain. Specifically, we present a comparative evaluation of in-context learning (ICL) with foundation models such as GPT-4 against fine-tuned task-specific language models, including MatSciBERT and DeBERTa. The study is performed on two materials fatigue datasets, which contain annotations at a comparatively fine-grained level adhering to the class definitions of a formal ontology to ensure semantic alignment and cross-dataset interoperability. Both datasets cover adjacent domains to assess how well both NER methodologies generalize when presented with typical domain shifts. Task-specific models are shown to significantly outperform general foundation models on an ontology-constrained NER. Our findings reveal a strong dependence on the quality of few-shot demonstrations in ICL to handle domain-shift. The study also highlights the significance of domain-specific pre-training by comparing task-specific models that differ primarily in their pre-training corpus.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"18597"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-03619-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Extracting structured and semantically annotated materials information from unstructured scientific literature is a crucial step toward constructing machine-interpretable knowledge graphs and accelerating data-driven materials research. This is especially important in materials science, which is adversely affected by data scarcity. Data scarcity further motivates employing solutions such as foundation language models for extracting information which can in principle address several subtasks of the information extraction problem in a range of domains without the need of generating costly large-scale annotated datasets for each downstream task. However, foundation language models struggle with tasks like Named Entity Recognition (NER) due to domain-specific terminologies, fine-grained entities, and semantic ambiguity. The issue is even more pronounced when entities must map directly to pre-existing domain ontologies. This work aims to assess whether foundation large language models (LLMs) can successfully perform ontology-conformal NER in the materials mechanics and fatigue domain. Specifically, we present a comparative evaluation of in-context learning (ICL) with foundation models such as GPT-4 against fine-tuned task-specific language models, including MatSciBERT and DeBERTa. The study is performed on two materials fatigue datasets, which contain annotations at a comparatively fine-grained level adhering to the class definitions of a formal ontology to ensure semantic alignment and cross-dataset interoperability. Both datasets cover adjacent domains to assess how well both NER methodologies generalize when presented with typical domain shifts. Task-specific models are shown to significantly outperform general foundation models on an ontology-constrained NER. Our findings reveal a strong dependence on the quality of few-shot demonstrations in ICL to handle domain-shift. The study also highlights the significance of domain-specific pre-training by comparing task-specific models that differ primarily in their pre-training corpus.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.