{"title":"Integrated in-silico design and in vivo validation of multi-epitope vaccines for norovirus.","authors":"Jingxuan Qiu, Yiwen Wei, Jiayi Shu, Wenjing Zheng, Yuxi Zhang, Junting Xie, Dong Zhang, Xiaochuan Luo, Xiulan Sun, Xin Wang, Sijie Wang, Xuanyi Wang, Tianyi Qiu","doi":"10.1186/s12985-025-02796-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Norovirus (NoVs) is a foodborne pathogen that causes acute gastroenteritis. The diversity of its principal antigenic protein poses a significant challenge to vaccine development and the prevention of large-scale outbreaks globally. Currently, no licensed vaccines against norovirus have been approved.</p><p><strong>Methods: </strong>We developed a novel pipeline that integrates multiple bioinformatics tools to design broad-spectrum vaccines against NoVs. Specifically, broad-spectrum T-cell epitope vaccines were designed based on consensus sequences and optimized epitope screening, while broad-spectrum B-cell spatial epitope vaccines were constructed using high-throughput antigenicity calculations and epitope mapping.</p><p><strong>Results: </strong>This pipeline underwent rigorous validation at three levels: firstly, In silico validation: Analysis of properties and structures demonstrated the appropriateness of amino acid composition and the structural integrity of the vaccine sequences. Secondly, theoretical assessment: Evaluation of human leukocyte antigen (HLA) subtype and antigenicity coverage indicated a broad theoretical protective spectrum for the designed vaccine immunogens. Furthermore, in silico simulation confirmed their ability to elicit an immune response. Finally, animal-level validation: Experiments in mice showed that both vaccine immunogens stimulated high levels of IgG and IgA. Notably, Vac-B induced a strong IgG response against GII.2 and a robust IgA response against GII.17, comparable to the immune response elicited by the wild-type NoV non-replicating virus-like particle (VLP) protein group.</p><p><strong>Conclusions: </strong>Both in silico and in vivo experimental findings suggest that the proposed pipeline and vaccine immunogens could serve as valuable theoretical guidance for the development of multi-epitope vaccines against NoVs.</p>","PeriodicalId":23616,"journal":{"name":"Virology Journal","volume":"22 1","pages":"166"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117790/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12985-025-02796-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Norovirus (NoVs) is a foodborne pathogen that causes acute gastroenteritis. The diversity of its principal antigenic protein poses a significant challenge to vaccine development and the prevention of large-scale outbreaks globally. Currently, no licensed vaccines against norovirus have been approved.
Methods: We developed a novel pipeline that integrates multiple bioinformatics tools to design broad-spectrum vaccines against NoVs. Specifically, broad-spectrum T-cell epitope vaccines were designed based on consensus sequences and optimized epitope screening, while broad-spectrum B-cell spatial epitope vaccines were constructed using high-throughput antigenicity calculations and epitope mapping.
Results: This pipeline underwent rigorous validation at three levels: firstly, In silico validation: Analysis of properties and structures demonstrated the appropriateness of amino acid composition and the structural integrity of the vaccine sequences. Secondly, theoretical assessment: Evaluation of human leukocyte antigen (HLA) subtype and antigenicity coverage indicated a broad theoretical protective spectrum for the designed vaccine immunogens. Furthermore, in silico simulation confirmed their ability to elicit an immune response. Finally, animal-level validation: Experiments in mice showed that both vaccine immunogens stimulated high levels of IgG and IgA. Notably, Vac-B induced a strong IgG response against GII.2 and a robust IgA response against GII.17, comparable to the immune response elicited by the wild-type NoV non-replicating virus-like particle (VLP) protein group.
Conclusions: Both in silico and in vivo experimental findings suggest that the proposed pipeline and vaccine immunogens could serve as valuable theoretical guidance for the development of multi-epitope vaccines against NoVs.
期刊介绍:
Virology Journal is an open access, peer reviewed journal that considers articles on all aspects of virology, including research on the viruses of animals, plants and microbes. The journal welcomes basic research as well as pre-clinical and clinical studies of novel diagnostic tools, vaccines and anti-viral therapies.
The Editorial policy of Virology Journal is to publish all research which is assessed by peer reviewers to be a coherent and sound addition to the scientific literature, and puts less emphasis on interest levels or perceived impact.