A Wireless Sensor Network-Based Combustible Gas Detection System Using PSO-DBO-Optimized BP Neural Network.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-05-16 DOI:10.3390/s25103151
Min Zhou, Sen Wang, Jianming Li, Zhe Wei, Lingqiao Shui
{"title":"A Wireless Sensor Network-Based Combustible Gas Detection System Using PSO-DBO-Optimized BP Neural Network.","authors":"Min Zhou, Sen Wang, Jianming Li, Zhe Wei, Lingqiao Shui","doi":"10.3390/s25103151","DOIUrl":null,"url":null,"abstract":"<p><p>Combustible gas leakage remains a critical safety concern in industrial and indoor environments, necessitating the development of detection systems that are both accurate and practically deployable. This study presents a wireless gas detection system that integrates a gas sensor array, a low-power microcontroller with Zigbee-based communication, and a Back Propagation (BP) neural network optimized via a sequential hybrid strategy. Specifically, Particle Swarm Optimization (PSO) is employed for global parameter initialization, followed by Dung Beetle Optimization (DBO) for local refinement, jointly enhancing the network's convergence speed and predictive precision. Experimental results confirm that the proposed PSO-DBO-BP model achieves high correlation coefficients (above 0.997) and low mean relative errors (below 0.25%) for all monitored gases, including hydrogen, carbon monoxide, alkanes, and smog. The model exhibits strong robustness in handling nonlinear responses and cross-sensitivity effects across multiple sensors, demonstrating its effectiveness in complex detection scenarios under laboratory conditions within embedded wireless sensor networks.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115557/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25103151","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Combustible gas leakage remains a critical safety concern in industrial and indoor environments, necessitating the development of detection systems that are both accurate and practically deployable. This study presents a wireless gas detection system that integrates a gas sensor array, a low-power microcontroller with Zigbee-based communication, and a Back Propagation (BP) neural network optimized via a sequential hybrid strategy. Specifically, Particle Swarm Optimization (PSO) is employed for global parameter initialization, followed by Dung Beetle Optimization (DBO) for local refinement, jointly enhancing the network's convergence speed and predictive precision. Experimental results confirm that the proposed PSO-DBO-BP model achieves high correlation coefficients (above 0.997) and low mean relative errors (below 0.25%) for all monitored gases, including hydrogen, carbon monoxide, alkanes, and smog. The model exhibits strong robustness in handling nonlinear responses and cross-sensitivity effects across multiple sensors, demonstrating its effectiveness in complex detection scenarios under laboratory conditions within embedded wireless sensor networks.

基于pso - dbo优化BP神经网络的无线传感器网络可燃气体检测系统。
可燃气体泄漏在工业和室内环境中仍然是一个重要的安全问题,因此需要开发既准确又可实际部署的检测系统。本研究提出了一种无线气体检测系统,该系统集成了气体传感器阵列、基于zigbee通信的低功耗微控制器和通过顺序混合策略优化的反向传播(BP)神经网络。其中,采用粒子群算法(PSO)进行全局参数初始化,采用屎壳虫算法(DBO)进行局部细化,共同提高了网络的收敛速度和预测精度。实验结果证实,PSO-DBO-BP模型对所有监测气体(包括氢气、一氧化碳、烷烃和烟雾)均具有较高的相关系数(大于0.997)和较低的平均相对误差(小于0.25%)。该模型在处理非线性响应和跨多个传感器的交叉灵敏度效应方面表现出很强的鲁棒性,证明了其在嵌入式无线传感器网络实验室条件下复杂检测场景中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信