Su Jang, Dongryung Lee, Backki Kim, Yoon Kyung Lee, Sangrae Shim, Soon-Wook Kwon, Hee-Jong Koh
{"title":"Epiallelic Variation of TILLER ANGLE CONTROL 5 (TAC5) Regulates Tiller Angle by Modulating Gravitropism in Rice.","authors":"Su Jang, Dongryung Lee, Backki Kim, Yoon Kyung Lee, Sangrae Shim, Soon-Wook Kwon, Hee-Jong Koh","doi":"10.1186/s12284-025-00794-4","DOIUrl":null,"url":null,"abstract":"<p><p>Tiller angle is a major component of rice plant architecture and affects planting density, photosynthetic efficiency, and ventilation. An extremely narrow or wide tiller angle adversely affects rice yield. Thus, a suitable tiller angle is considered a major factor to achieve ideal plant architecture in rice. In this study, we identified a major quantitative trait locus (QTL) that controls tiller angle and cloned the gene, TILLER ANGLE CONTROL 5 (TAC5), which encodes a NAC domain-containing transcription factor. Epigenetic variants at the CG site in the TAC5 promoter were stably inherited and associated with TAC5 mRNA expression. The TAC5 epiallele with a hypermethylated cytosine in the promoter exhibited an immediate response to gravistimulation with a simultaneous elevation of H<sub>2</sub>O<sub>2</sub> levels at the early stage of gravistimulation. Furthermore, TAC5 affected the expression patterns of transcripts involved in reactive oxygen species (ROS) generation and the response to excessive ROS. Population genetics and evolutionary analyses revealed that TAC5 alleles for the narrow tiller angle originated from a wild progenitor and were selected independently in temperate japonica and indica subspecies during domestication. Our results provide insight into the genetic mechanism of tiller angle control in rice and suggest potential applications of TAC5 in developing rice varieties with an ideal plant architecture.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"44"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00794-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Tiller angle is a major component of rice plant architecture and affects planting density, photosynthetic efficiency, and ventilation. An extremely narrow or wide tiller angle adversely affects rice yield. Thus, a suitable tiller angle is considered a major factor to achieve ideal plant architecture in rice. In this study, we identified a major quantitative trait locus (QTL) that controls tiller angle and cloned the gene, TILLER ANGLE CONTROL 5 (TAC5), which encodes a NAC domain-containing transcription factor. Epigenetic variants at the CG site in the TAC5 promoter were stably inherited and associated with TAC5 mRNA expression. The TAC5 epiallele with a hypermethylated cytosine in the promoter exhibited an immediate response to gravistimulation with a simultaneous elevation of H2O2 levels at the early stage of gravistimulation. Furthermore, TAC5 affected the expression patterns of transcripts involved in reactive oxygen species (ROS) generation and the response to excessive ROS. Population genetics and evolutionary analyses revealed that TAC5 alleles for the narrow tiller angle originated from a wild progenitor and were selected independently in temperate japonica and indica subspecies during domestication. Our results provide insight into the genetic mechanism of tiller angle control in rice and suggest potential applications of TAC5 in developing rice varieties with an ideal plant architecture.
期刊介绍:
Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.