Biochemical and structural basis of Dicer helicase function unveiled by resurrecting ancient proteins.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Adedeji M Aderounmu, Josephine Maus-Conn, Claudia D Consalvo, Peter S Shen, Brenda L Bass
{"title":"Biochemical and structural basis of Dicer helicase function unveiled by resurrecting ancient proteins.","authors":"Adedeji M Aderounmu, Josephine Maus-Conn, Claudia D Consalvo, Peter S Shen, Brenda L Bass","doi":"10.1073/pnas.2500825122","DOIUrl":null,"url":null,"abstract":"<p><p>A fully functional Dicer helicase, present in the modern arthropod, uses energy from ATP hydrolysis to power translocation on bound dsRNA, enabling the processive dsRNA cleavage required for efficient antiviral defense. However, modern Dicer orthologs exhibit divergent helicase functions that affect their ability to contribute to antiviral defense. Moreover, mechanisms that couple ATP hydrolysis to Dicer helicase movement on dsRNA remain enigmatic. We used biochemical and structural analyses of ancestrally reconstructed Dicer helicases to map evolution of dsRNA binding affinity, ATP hydrolysis and translocation. Loss of affinity for dsRNA occurred early in Dicer evolution, coinciding with a decline in translocation activity, despite preservation of ATP hydrolysis activity. Ancestral nematode Dicer also exhibited significant decline in ATP hydrolysis and translocation, but studies of antiviral activities in the modern nematode <i>Caenorhabditis elegans</i> indicate Dicer retained a role in antiviral defense by recruiting a second helicase. Cryogenic electron microscopy (cryo-EM) analyses of an ancient metazoan Dicer allowed capture of multiple helicase states revealing the mechanism that connects each step of ATP hydrolysis to unidirectional movement along dsRNA. Our study rationalizes the diversity in modern Dicer helicases by connecting ancestral functions to observations in extant enzymes.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 22","pages":"e2500825122"},"PeriodicalIF":9.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2500825122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A fully functional Dicer helicase, present in the modern arthropod, uses energy from ATP hydrolysis to power translocation on bound dsRNA, enabling the processive dsRNA cleavage required for efficient antiviral defense. However, modern Dicer orthologs exhibit divergent helicase functions that affect their ability to contribute to antiviral defense. Moreover, mechanisms that couple ATP hydrolysis to Dicer helicase movement on dsRNA remain enigmatic. We used biochemical and structural analyses of ancestrally reconstructed Dicer helicases to map evolution of dsRNA binding affinity, ATP hydrolysis and translocation. Loss of affinity for dsRNA occurred early in Dicer evolution, coinciding with a decline in translocation activity, despite preservation of ATP hydrolysis activity. Ancestral nematode Dicer also exhibited significant decline in ATP hydrolysis and translocation, but studies of antiviral activities in the modern nematode Caenorhabditis elegans indicate Dicer retained a role in antiviral defense by recruiting a second helicase. Cryogenic electron microscopy (cryo-EM) analyses of an ancient metazoan Dicer allowed capture of multiple helicase states revealing the mechanism that connects each step of ATP hydrolysis to unidirectional movement along dsRNA. Our study rationalizes the diversity in modern Dicer helicases by connecting ancestral functions to observations in extant enzymes.

复活古蛋白揭示Dicer解旋酶功能的生化和结构基础。
现代节肢动物中存在一种功能完备的Dicer解旋酶,它利用ATP水解产生的能量来驱动结合的dsRNA上的移位,从而实现有效抗病毒防御所需的dsRNA的持续切割。然而,现代Dicer同源物表现出不同的解旋酶功能,影响其抗病毒防御能力。此外,ATP水解与Dicer解旋酶在dsRNA上的运动耦合的机制仍然是谜。我们通过对祖先重建的Dicer解旋酶的生化和结构分析,绘制了dsRNA结合亲和力、ATP水解和易位的进化图谱。dsRNA亲和力的丧失发生在Dicer进化的早期,与易位活性的下降相一致,尽管保留了ATP水解活性。祖先线虫Dicer也表现出ATP水解和易位的显著下降,但对现代线虫秀丽隐杆线虫抗病毒活性的研究表明,Dicer通过招募第二解旋酶保留了抗病毒防御的作用。低温电子显微镜(cro - em)分析了一个古老的后生动物Dicer,捕获了多个解旋酶状态,揭示了ATP水解的每个步骤与沿dsRNA单向运动的机制。我们的研究通过将祖先的功能与现存酶的观察联系起来,使现代Dicer解旋酶的多样性合理化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信