Assessment of RF Electromagnetic Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-05-21 DOI:10.3390/s25103247
Shirun Wang, Mai Lu
{"title":"Assessment of RF Electromagnetic Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics.","authors":"Shirun Wang, Mai Lu","doi":"10.3390/s25103247","DOIUrl":null,"url":null,"abstract":"<p><p>Vehicles are rapidly evolving into objects of intelligent interconnection. Vehicle-to-Vehicle (V2V) communications enable the interconnection between vehicles, while also leading to new electromagnetic exposure scenarios. This paper integrates a monopole array antenna into a shark-fin antenna on the car roof for V2V communications and evaluates the specific absorption rate (SAR) and temperature rise of a human body in a smart mobility communication scenario operating at 5.9 GHz. The V2V antenna is modeled and placed on a 3D vehicle model using COMSOL Multiphysics (v.6.2) to numerically estimate the SAR in the head and body regions of the human body model (adult male) inside the vehicle. Both the localized and whole-body 30 min average SAR are lower than the International Commission on Non-Ionizing Radiation Protection (ICNIRP) occupational restrictions for electromagnetic field exposure from 100 kHz to 6 GHz, being equal in the worst-case scenario to 0.981 W/kg (for the head), which is 9.81% of the ICNIRP limit (10 W/kg), and 0.008728 W/kg (for the whole-body average), which is 2.18% of the ICNIRP limit (0.4 W/kg). The 30 min average human core temperature rise is 0.055 °C, which is 5.5% of the ICNIRP limit. This indicates that, in typical automotive scenarios, the electromagnetic exposure from a monopole array antenna for V2V communications does not pose threat to the human body. This study provides knowledge related to emerging exposure scenarios in intelligent mobility communication, which is beneficial for evaluating possible health impacts and designing public health management policies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25103247","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicles are rapidly evolving into objects of intelligent interconnection. Vehicle-to-Vehicle (V2V) communications enable the interconnection between vehicles, while also leading to new electromagnetic exposure scenarios. This paper integrates a monopole array antenna into a shark-fin antenna on the car roof for V2V communications and evaluates the specific absorption rate (SAR) and temperature rise of a human body in a smart mobility communication scenario operating at 5.9 GHz. The V2V antenna is modeled and placed on a 3D vehicle model using COMSOL Multiphysics (v.6.2) to numerically estimate the SAR in the head and body regions of the human body model (adult male) inside the vehicle. Both the localized and whole-body 30 min average SAR are lower than the International Commission on Non-Ionizing Radiation Protection (ICNIRP) occupational restrictions for electromagnetic field exposure from 100 kHz to 6 GHz, being equal in the worst-case scenario to 0.981 W/kg (for the head), which is 9.81% of the ICNIRP limit (10 W/kg), and 0.008728 W/kg (for the whole-body average), which is 2.18% of the ICNIRP limit (0.4 W/kg). The 30 min average human core temperature rise is 0.055 °C, which is 5.5% of the ICNIRP limit. This indicates that, in typical automotive scenarios, the electromagnetic exposure from a monopole array antenna for V2V communications does not pose threat to the human body. This study provides knowledge related to emerging exposure scenarios in intelligent mobility communication, which is beneficial for evaluating possible health impacts and designing public health management policies.

考虑热特性的V2V通信中单极子阵列天线对汽车驾驶员射频电磁暴露评估
车辆正迅速演变为智能互联的对象。车对车(V2V)通信实现了车辆之间的互联,同时也导致了新的电磁暴露场景。本文将单极子阵列天线集成到汽车车顶的鲨鱼鳍天线中,用于V2V通信,并评估了5.9 GHz智能移动通信场景下人体的比吸收率(SAR)和温升。使用COMSOL Multiphysics (v.6.2)对V2V天线进行建模,并将其放置在3D车辆模型上,以数值估计车辆内人体模型(成年男性)头部和身体区域的SAR。局部和全身30分钟平均SAR均低于国际非电离辐射防护委员会(ICNIRP)对100 kHz至6 GHz电磁场暴露的职业限制,在最糟糕的情况下等于0.981 W/kg(头部),是ICNIRP限值(10 W/kg)的9.81%,0.008728 W/kg(全身平均值),是ICNIRP限值(0.4 W/kg)的2.18%。30 min人体核心平均温升为0.055℃,为ICNIRP限值的5.5%。这表明,在典型的汽车场景中,用于V2V通信的单极子阵列天线的电磁暴露不会对人体构成威胁。本研究提供了与智能移动通信中新兴暴露情景相关的知识,有助于评估可能的健康影响和制定公共卫生管理政策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信