Simulation Analysis and Optimization Design of Dome Structure in Filament Wound Composite Shells.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-21 DOI:10.3390/polym17101421
Yuan Zhou, Yuyang Zou, Qingguo Xia, Longkai Cao, Minghua Zhang, Tao Shen, Jianke Du
{"title":"Simulation Analysis and Optimization Design of Dome Structure in Filament Wound Composite Shells.","authors":"Yuan Zhou, Yuyang Zou, Qingguo Xia, Longkai Cao, Minghua Zhang, Tao Shen, Jianke Du","doi":"10.3390/polym17101421","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon fiber-reinforced composites are widely used in the aerospace industry due to their exceptional mechanical properties. However, the dome region of composite pressure vessels is prone to stress concentrations under internal pressure, often resulting in premature failure and reduced burst strength. This study developed a finite element model of a reinforced dome structure, which showed excellent agreement with hydrostatic test results, with less than 5.9% deviation in strain measurements. To optimize key reinforcement parameters, a high-accuracy surrogate model based on a backpropagation neural network was integrated with a multi-objective genetic algorithm. The results indicate that compared to the unreinforced dome, the optimized structure reduced the maximum fiber-aligned stress in the dome region by 6.8%; moreover, it achieved a 9.3% reduction in overall mass compared to the unoptimized reinforced configuration. These findings contribute to the structural optimization of composite pressure vessel domes.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12115203/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon fiber-reinforced composites are widely used in the aerospace industry due to their exceptional mechanical properties. However, the dome region of composite pressure vessels is prone to stress concentrations under internal pressure, often resulting in premature failure and reduced burst strength. This study developed a finite element model of a reinforced dome structure, which showed excellent agreement with hydrostatic test results, with less than 5.9% deviation in strain measurements. To optimize key reinforcement parameters, a high-accuracy surrogate model based on a backpropagation neural network was integrated with a multi-objective genetic algorithm. The results indicate that compared to the unreinforced dome, the optimized structure reduced the maximum fiber-aligned stress in the dome region by 6.8%; moreover, it achieved a 9.3% reduction in overall mass compared to the unoptimized reinforced configuration. These findings contribute to the structural optimization of composite pressure vessel domes.

纤维缠绕复合材料壳体圆顶结构的仿真分析与优化设计。
碳纤维增强复合材料以其优异的力学性能被广泛应用于航空航天领域。然而,复合材料压力容器的穹顶区域在内压作用下容易发生应力集中,往往导致其过早失效,破坏强度降低。本研究建立了加固穹顶结构的有限元模型,该模型与静压试验结果吻合良好,应变测量偏差小于5.9%。为了优化关键加固参数,将基于反向传播神经网络的高精度代理模型与多目标遗传算法相结合。结果表明:与未加筋穹顶相比,优化后的穹顶区域最大纤维定向应力降低了6.8%;此外,与未优化的加固结构相比,它的总质量减少了9.3%。这些发现有助于复合材料压力容器圆顶的结构优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信