Muhammed İhsan Özgün, Vildan Erci, Emrah Madenci, Fatih Erci
{"title":"The Effect of Nano-Biochar Derived from Olive Waste on the Thermal and Mechanical Properties of Epoxy Composites.","authors":"Muhammed İhsan Özgün, Vildan Erci, Emrah Madenci, Fatih Erci","doi":"10.3390/polym17101337","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties of epoxy-resin-based composites. First, the biochar from olive pulp was produced by pyrolysis at 450 °C and turned to nano-biochar using ball milling. Composite samples containing nano-biochar at different rates between 0 and 10% were prepared. The nano-biochar and composite samples were characterized by using different techniques such as SEM-EDS, BET, FTIR, XRD, Raman, TGA, and DMA analyses. Also, the tensile strength, elastic modulus, Shore D hardness, thermal stability, and static toughness of the composite samples were evaluated. The best performance was observed in the sample containing 6% nano-biochar; the ultimate tensile strength increased from 17.37 MPa to 23.46 MPa compared to pure epoxy, and the elastic modulus and hardness increased. However, a decrease in brittleness and toughness was observed at higher additive rates. FTIR and DMA analyses indicated that the nano-biochar interacted strongly with the epoxy matrix and increased its thermal stability. The results showed that the olive-pulp-derived nano-biochar could be used to improve the structural and thermal properties of the epoxy composites as an inexpensive and environmentally friendly filler. As a result, this study contributes to the production of new polymer-based materials that will encourage the production of environmentally friendly composites with nano-scale biochar obtained from olive waste, which is an easily accessible, renewable by-product.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114637/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101337","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand for the development of environmentally friendly alternatives to petroleum-derived materials has increased research efforts on sustainable polymer composites. This study systematically examined the effect of nano-biochar derived from agricultural wastes such as olive pulp on the mechanical and thermal properties of epoxy-resin-based composites. First, the biochar from olive pulp was produced by pyrolysis at 450 °C and turned to nano-biochar using ball milling. Composite samples containing nano-biochar at different rates between 0 and 10% were prepared. The nano-biochar and composite samples were characterized by using different techniques such as SEM-EDS, BET, FTIR, XRD, Raman, TGA, and DMA analyses. Also, the tensile strength, elastic modulus, Shore D hardness, thermal stability, and static toughness of the composite samples were evaluated. The best performance was observed in the sample containing 6% nano-biochar; the ultimate tensile strength increased from 17.37 MPa to 23.46 MPa compared to pure epoxy, and the elastic modulus and hardness increased. However, a decrease in brittleness and toughness was observed at higher additive rates. FTIR and DMA analyses indicated that the nano-biochar interacted strongly with the epoxy matrix and increased its thermal stability. The results showed that the olive-pulp-derived nano-biochar could be used to improve the structural and thermal properties of the epoxy composites as an inexpensive and environmentally friendly filler. As a result, this study contributes to the production of new polymer-based materials that will encourage the production of environmentally friendly composites with nano-scale biochar obtained from olive waste, which is an easily accessible, renewable by-product.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.