Polymer-Based Thermal Protective Composites: The Role of Reinforcement and Matrix in Providing Strength and Fire Resistance.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-05-21 DOI:10.3390/polym17101419
Mohammed Meiirbekov, Assem Kuandyk, Mukhammed Sadykov, Meiir Nurzhanov, Nurmakhan Yesbolov, Berdiyar Baiserikov, Ilyas Ablakatov, Laura Mustafa, Botagoz Medyanova, Arman Kulbekov, Sunkar Orazbek, Abussaid Yermekov
{"title":"Polymer-Based Thermal Protective Composites: The Role of Reinforcement and Matrix in Providing Strength and Fire Resistance.","authors":"Mohammed Meiirbekov, Assem Kuandyk, Mukhammed Sadykov, Meiir Nurzhanov, Nurmakhan Yesbolov, Berdiyar Baiserikov, Ilyas Ablakatov, Laura Mustafa, Botagoz Medyanova, Arman Kulbekov, Sunkar Orazbek, Abussaid Yermekov","doi":"10.3390/polym17101419","DOIUrl":null,"url":null,"abstract":"<p><p>This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different textile reinforcements under identical conditions. Seven technical fabrics-carbon, aramid, basalt, silica, fiberglass, asbestos, and a carbon/aramid hybrid-were used as reinforcements. Mechanical testing revealed that carbon- and hybrid fiber composites exhibited the highest tensile (up to 465 MPa) and compressive strengths (up to 301 MPa), particularly when combined with ER. Conversely, the use of PF generally resulted in a 30-50% reduction in mechanical strength. However, PF-based composites demonstrated superior thermal resistance, with the silica/PF combination showing the lowest back-face temperature (401 °C), up to 37% lower than other pairings. Thermal conductivity ranged from 0.041 to 0.51 W/m·K, with PF-based systems offering 6-12% lower values on average compared to ER-based analogs. Morphological analysis confirmed better interfacial bonding in ER composites, while PF systems showed higher structural integrity under thermal loading. Overall, the results emphasize the trade-offs between mechanical strength and thermal protection depending on the fabric-resin combination. Among all variants, the silica fabric with PF demonstrated the most balanced performance, making it a promising candidate for thermomechanical applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 10","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12114836/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17101419","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the need for thermomechanically robust materials for high-temperature environments by investigating fabric-reinforced composites produced through polymer infiltration and thermal pressing using phenol-formaldehyde (PF) and epoxy (ER) resins. Experimental validation was required due to the lack of comparative data across different textile reinforcements under identical conditions. Seven technical fabrics-carbon, aramid, basalt, silica, fiberglass, asbestos, and a carbon/aramid hybrid-were used as reinforcements. Mechanical testing revealed that carbon- and hybrid fiber composites exhibited the highest tensile (up to 465 MPa) and compressive strengths (up to 301 MPa), particularly when combined with ER. Conversely, the use of PF generally resulted in a 30-50% reduction in mechanical strength. However, PF-based composites demonstrated superior thermal resistance, with the silica/PF combination showing the lowest back-face temperature (401 °C), up to 37% lower than other pairings. Thermal conductivity ranged from 0.041 to 0.51 W/m·K, with PF-based systems offering 6-12% lower values on average compared to ER-based analogs. Morphological analysis confirmed better interfacial bonding in ER composites, while PF systems showed higher structural integrity under thermal loading. Overall, the results emphasize the trade-offs between mechanical strength and thermal protection depending on the fabric-resin combination. Among all variants, the silica fabric with PF demonstrated the most balanced performance, making it a promising candidate for thermomechanical applications.

聚合物基热防护复合材料:增强剂和基体在提供强度和耐火性能中的作用。
本研究通过研究使用酚醛(PF)和环氧树脂(ER)通过聚合物渗透和热压生产的织物增强复合材料,解决了高温环境下对热机械坚固材料的需求。由于缺乏相同条件下不同纺织增强材料的比较数据,因此需要进行实验验证。碳纤维、芳纶、玄武岩、二氧化硅、玻璃纤维、石棉和碳/芳纶混合材料这七种技术纤维被用作增强材料。力学测试表明,碳纤维和混杂纤维复合材料具有最高的拉伸强度(高达465 MPa)和抗压强度(高达301 MPa),特别是当与ER结合使用时。相反,使用PF通常会导致机械强度降低30-50%。然而,PF基复合材料表现出优异的耐热性,二氧化硅/PF组合的背面温度最低(401°C),比其他组合低37%。导热系数范围为0.041至0.51 W/m·K,与基于er的类似物相比,基于pf的系统平均提供6-12%的低值。形态学分析证实了内质网复合材料具有更好的界面结合能力,而酚醛复合材料在热载荷作用下具有更高的结构完整性。总的来说,研究结果强调了机械强度和热防护之间的权衡,这取决于织物-树脂组合。在所有变体中,具有PF的二氧化硅织物表现出最平衡的性能,使其成为热机械应用的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信