Luiz Orlando de Oliveira, Hugo Vianna Silva Rody, Selene Aguilera, Jesus Murillo
{"title":"Integrative Elements Repeatedly Captured the Phaseolotoxin Biosynthesis Gene Cluster and Invaded <i>Pseudomonas syringae</i> Multiple Times.","authors":"Luiz Orlando de Oliveira, Hugo Vianna Silva Rody, Selene Aguilera, Jesus Murillo","doi":"10.1094/PHYTO-01-25-0017-R","DOIUrl":null,"url":null,"abstract":"<p><p>Phaseolotoxin is a virulence factor of <i>Pseudomonas amygdali</i> pv. <i>phaseolicola</i> (Pph) and <i>P. syringae</i> pv. <i>actinidiae</i> (Psa). Herein, we explore the evolutionary history of a genomic island (Tox island) composed of an integrative element (GInt) carrying the 23-gene cluster (Pht cluster) for biosynthesis of phaseolotoxin and toxin resistance. Our analyses indicate that the Pht cluster has been acquired, either naked or associated with a GInt, on seven independent occasions by four phylogroups of the <i>P. syringae</i> complex (Pph, Psa, <i>P. caricapapayae</i>, and <i>P. syringae</i> pv. <i>syringae</i>) and the phylogenetically distant rhizobacterium <i>Pseudomonas</i> sp. JAI115. The Pht cluster was independently captured by three distinct GInt elements, suggesting specific mechanisms for gene capture. Once acquired, the Tox island tends to be stably maintained, evolving with the genome. The likely evolutionary trajectory of the Tox island within Pph and Psa involved: i) acquisition by Pph; ii) transfer of the Tox island from Pph to Psa biovar 1; iii) independent acquisition from unknown sources of a different version of the Tox island by Psa biovar 1, generating a second toxigenic lineage; 4) independent acquisition from unknown sources of a third version of the Tox island by Psa biovar 6; and 5) replacement of the Tox island in Pph by a distantly related GInt, generating nontoxigenic isolates. These findings underscore the potential role of phaseolotoxin in bacterial fitness and contribute to our understanding of the evolutionary dynamics of mobile genetic elements and virulence evolution in bacterial plant pathogens.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-01-25-0017-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phaseolotoxin is a virulence factor of Pseudomonas amygdali pv. phaseolicola (Pph) and P. syringae pv. actinidiae (Psa). Herein, we explore the evolutionary history of a genomic island (Tox island) composed of an integrative element (GInt) carrying the 23-gene cluster (Pht cluster) for biosynthesis of phaseolotoxin and toxin resistance. Our analyses indicate that the Pht cluster has been acquired, either naked or associated with a GInt, on seven independent occasions by four phylogroups of the P. syringae complex (Pph, Psa, P. caricapapayae, and P. syringae pv. syringae) and the phylogenetically distant rhizobacterium Pseudomonas sp. JAI115. The Pht cluster was independently captured by three distinct GInt elements, suggesting specific mechanisms for gene capture. Once acquired, the Tox island tends to be stably maintained, evolving with the genome. The likely evolutionary trajectory of the Tox island within Pph and Psa involved: i) acquisition by Pph; ii) transfer of the Tox island from Pph to Psa biovar 1; iii) independent acquisition from unknown sources of a different version of the Tox island by Psa biovar 1, generating a second toxigenic lineage; 4) independent acquisition from unknown sources of a third version of the Tox island by Psa biovar 6; and 5) replacement of the Tox island in Pph by a distantly related GInt, generating nontoxigenic isolates. These findings underscore the potential role of phaseolotoxin in bacterial fitness and contribute to our understanding of the evolutionary dynamics of mobile genetic elements and virulence evolution in bacterial plant pathogens.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.